
Calculate the enthalpy of formation of water, given that the bond energies of $H - H$ , $O - O$ , $O - H$ bond are $433kJ/mol,492kJ/mol,464kJ/mol$ respectively.
A. $\Delta H = - 249kJ$
B. $\Delta H = + 249kJ$
C. $\Delta H = - 649kJ$
D. None of these
Answer
560.7k+ views
Hint: Enthalpy is defined as the sum of internal energy and the product of pressure and volume of the thermodynamic system. Bond energy is defined as the amount of energy required to break a bond.
Complete step by step answer:
Enthalpy is given by the formula as follows:
$H = E + PV$
Where,
$H = $ enthalpy
$E = $ Internal energy
$P = $ Pressure
$V = $ volume.
The reaction of formation of water is given below:
${H_2} + \dfrac{1}{2}{O_2} \to {H_2}O$
Hess’s law states that the change in enthalpy is independent of the pathway (it does not depend on temperature and pressure) between the initial and final states of the reaction.
It is given by the formula as follows:
Heat of formation$\left( {\Delta H} \right) = $ sum of standard enthalpies of reactants$ - $ sum of standard enthalpies of products.
Given data:
Bond energy of $H - H$bond$ = 433kJ/mol$
Bond energy of $O - O$bond$ = 492kJ/mol$
Bond energy of $O - H$bond$ = 464kJ/mol$
Using Hess’s law we will find the enthalpy of formation of water.
Heat of formation $\left( {\Delta H} \right) = $ sum of standard enthalpies of reactants $ - $ sum of standard enthalpies of products
Heat of formation $\left( {\Delta H} \right)$ = bond energy of H - H + bond energy of $\dfrac{1}{2}{O_2} - 2 \times $bond energy of $O - H$
Substituting the values of the bond energies in the equation we get,
$ = \left( {433 + \dfrac{1}{2} \times 492} \right) - \left( {2 \times 464} \right)$
$ = \left( {433 + 246} \right) - \left( {928} \right)$
$ = 679 - 928$
$ = - 249kJ$
So the enthalpy required for the formation of water is $ - 249kJ$ .
So, the correct answer is Option A.
Note: Since the heat of formation is negative then the reaction is exothermic. If the heat of formation is positive then the reaction will be endothermic.
Hess’s law is very useful to calculate the enthalpy changes that cannot be measured directly from the experiments.
Bond breaking is an endothermic process.
Complete step by step answer:
Enthalpy is given by the formula as follows:
$H = E + PV$
Where,
$H = $ enthalpy
$E = $ Internal energy
$P = $ Pressure
$V = $ volume.
The reaction of formation of water is given below:
${H_2} + \dfrac{1}{2}{O_2} \to {H_2}O$
Hess’s law states that the change in enthalpy is independent of the pathway (it does not depend on temperature and pressure) between the initial and final states of the reaction.
It is given by the formula as follows:
Heat of formation$\left( {\Delta H} \right) = $ sum of standard enthalpies of reactants$ - $ sum of standard enthalpies of products.
Given data:
Bond energy of $H - H$bond$ = 433kJ/mol$
Bond energy of $O - O$bond$ = 492kJ/mol$
Bond energy of $O - H$bond$ = 464kJ/mol$
Using Hess’s law we will find the enthalpy of formation of water.
Heat of formation $\left( {\Delta H} \right) = $ sum of standard enthalpies of reactants $ - $ sum of standard enthalpies of products
Heat of formation $\left( {\Delta H} \right)$ = bond energy of H - H + bond energy of $\dfrac{1}{2}{O_2} - 2 \times $bond energy of $O - H$
Substituting the values of the bond energies in the equation we get,
$ = \left( {433 + \dfrac{1}{2} \times 492} \right) - \left( {2 \times 464} \right)$
$ = \left( {433 + 246} \right) - \left( {928} \right)$
$ = 679 - 928$
$ = - 249kJ$
So the enthalpy required for the formation of water is $ - 249kJ$ .
So, the correct answer is Option A.
Note: Since the heat of formation is negative then the reaction is exothermic. If the heat of formation is positive then the reaction will be endothermic.
Hess’s law is very useful to calculate the enthalpy changes that cannot be measured directly from the experiments.
Bond breaking is an endothermic process.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

What is the nature of force between two parallel conductors class 11 physics CBSE

Whiptails disease in cauliflower is noted due to deficiency class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

