
How do you calculate \[\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))\] ?
Answer
510.9k+ views
Hint:We will use the trigonometric identity\[{\cos ^2} + {\sin ^2} = 1\]. We will use Pythagoras theorem here to get the value i.e. know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. So we must find \[\sin ({\sin ^{ - 1}}(\dfrac{2}{3}))\] and \[\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))\]. By the definition of the inverse function, \[\sin ({\sin ^{ - 1}}(x)) = x\] for all \[ - 1 \leqslant x \leqslant 1\].
Complete step by step answer:
According to the definition of inverse function \[\sin ({\sin ^{ - 1}}(x)) = x\]. Thus, using this above definition, we get,
\[\sin ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3}\]
Next, we will calculate the value for cos function.
Also, the value of\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))\] is positive. Thus, by using Pythagoras theorem, we get
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))\]
As we know that, \[{\cos ^2} + {\sin ^2} = 1\] and so using this trigonometry identity, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{\sin }^2}({{\sin }^{ - 1}}(\dfrac{2}{3}))} \]
Substituting the values in the above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{(\dfrac{2}{3})}^2}} \]
Removing the brackets, we get,
\[ \cos ({\sin ^{ - 1}}(\dfrac{2}{3}))= \sqrt {1 - \dfrac{4}{9}} \]
Taking LCM \[9\]in the denominator in the above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{{9 - 4}}{9}} \]
Simplify this above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{9}} \]
\[\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{{{3^2}}}} \] \[(\because 9 = {3^2})\]
\[\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}\]
Thus, the value of\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}\].
Last, we will calculate the value for tan function.So,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))\]
As we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\], we will use this in the above expression and we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sin ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}{{\cos ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}\]
Substituting the values in the above expression, we get,
\[ \tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}\]
Simplify this above expression, we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \div \dfrac{{\sqrt 5 }}{3}\]
Removing the division sign and convert it into multiplication sign, we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}\]
\[\Rightarrow \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{{\sqrt 5 }}\]
Multiplying by \[\sqrt 5 \]in both the numerator and denominator, we get,
\[ \tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{2}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }}\]
\[\therefore \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}\].............\[(\because \sqrt 5 \times \sqrt 5 = 5)\]
Hence, the value of \[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}\].
Note:The expression \[{\sin ^{ - 1}}(x)\] is not the same as \[\dfrac{1}{{\sin (x)}}\]. In other words, \[ - 1\] is not an exponent. Instead, it simply means inverse function. The trigonometric functions sinx, cosx and tanx can be used to find an unknown side length of a right triangle, if one side length and an angle measure are known. The inverse trigonometric functions \[{\sin ^{ - 1}}x,{\cos ^{^{ - 1}}}x,{\tan ^{ - 1}}x\], are used to find the unknown measure of an angle of a right triangle when two side lengths are known.
Complete step by step answer:
According to the definition of inverse function \[\sin ({\sin ^{ - 1}}(x)) = x\]. Thus, using this above definition, we get,
\[\sin ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3}\]
Next, we will calculate the value for cos function.
Also, the value of\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))\] is positive. Thus, by using Pythagoras theorem, we get
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))\]
As we know that, \[{\cos ^2} + {\sin ^2} = 1\] and so using this trigonometry identity, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{\sin }^2}({{\sin }^{ - 1}}(\dfrac{2}{3}))} \]
Substituting the values in the above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{(\dfrac{2}{3})}^2}} \]
Removing the brackets, we get,
\[ \cos ({\sin ^{ - 1}}(\dfrac{2}{3}))= \sqrt {1 - \dfrac{4}{9}} \]
Taking LCM \[9\]in the denominator in the above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{{9 - 4}}{9}} \]
Simplify this above expression, we get,
\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{9}} \]
\[\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{{{3^2}}}} \] \[(\because 9 = {3^2})\]
\[\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}\]
Thus, the value of\[\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}\].
Last, we will calculate the value for tan function.So,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))\]
As we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\], we will use this in the above expression and we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sin ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}{{\cos ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}\]
Substituting the values in the above expression, we get,
\[ \tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}\]
Simplify this above expression, we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \div \dfrac{{\sqrt 5 }}{3}\]
Removing the division sign and convert it into multiplication sign, we get,
\[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}\]
\[\Rightarrow \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{{\sqrt 5 }}\]
Multiplying by \[\sqrt 5 \]in both the numerator and denominator, we get,
\[ \tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{2}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }}\]
\[\therefore \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}\].............\[(\because \sqrt 5 \times \sqrt 5 = 5)\]
Hence, the value of \[\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}\].
Note:The expression \[{\sin ^{ - 1}}(x)\] is not the same as \[\dfrac{1}{{\sin (x)}}\]. In other words, \[ - 1\] is not an exponent. Instead, it simply means inverse function. The trigonometric functions sinx, cosx and tanx can be used to find an unknown side length of a right triangle, if one side length and an angle measure are known. The inverse trigonometric functions \[{\sin ^{ - 1}}x,{\cos ^{^{ - 1}}}x,{\tan ^{ - 1}}x\], are used to find the unknown measure of an angle of a right triangle when two side lengths are known.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

