
Calculate AC, BC and (A+B)C if A = $\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ , B = $\left[ \begin{align}
& \text{0 1 1} \\
& \text{1 0 2} \\
& \text{1 2 0} \\
\end{align} \right]$ , C = $\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$. Also, verify that (A+B) C = AC + BC.
Answer
590.7k+ views
Hint: To solve this problem, we use the basic properties of matrix operations (in this case addition and multiplication). We will then use this to prove (A+B) C = AC + BC.
Complete step-by-step answer:
We solve this problem by understanding how we can perform the addition operation first. For a 3$\times$3 matrix, we add two matrices by adding the corresponding entries of both matrices together. One should keep in mind that both the matrices we add should have the same number of rows and columns. This is explained through the example below -
$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ + $\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ = $\left[ \begin{align}
& \text{0 12 14} \\
& \text{-12 0 16} \\
& \text{14 -16 0} \\
\end{align} \right]$ -- (1)
Now, we also understand how to perform matrix multiplication operations. In this case, since we will always multiply 3 $\times $ 3 and 3 $\times $ 1 together, we use the following formula, we have,
$\left[ \begin{align}
& \text{a b c} \\
& \text{d e f} \\
& \text{g h i} \\
\end{align} \right]$$\left[ \begin{align}
& x \\
& y \\
& z \\
\end{align} \right]$ = \[\left[ \begin{align}
& \left( ax+by+cz \right) \\
& \left( dx+ey+fz \right) \\
& \left( gx+hy+iz \right) \\
\end{align} \right]\] -- (2)
We will use this to multiply any two matrices and compare the numbers in these matrices with a, b, c, d, e, f, g, h and i.
Now, we calculate AC using the formula given by (2), we have,
=$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$= \[\left[ \begin{align}
& 9 \\
& 12 \\
& 30 \\
\end{align} \right]\] -- (A)
Also, we similarly calculate BC, we get,
=$\left[ \begin{align}
& \text{0 1 1} \\
& \text{1 0 2} \\
& \text{1 2 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$= \[\left[ \begin{align}
& {1} \\
& {8} \\
& {-2} \\
\end{align} \right]\] -- (B)
We now calculate (A+B) C, we first start with calculating (A+B), we do this by calculating by using the formula given by (1), we have,
$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ + $\left[ \begin{align}
& \text{0 1 1} \\
& \text{1 0 2} \\
& \text{1 2 0} \\
\end{align} \right]$ = $\left[ \begin{align}
& \text{0 7 8} \\
& \text{-5 0 10} \\
& \text{ 8 -6 0} \\
\end{align} \right]$
Now, we multiply this matrix by matrix C. We have,
= $\left[ \begin{align}
& \text{0 7 8} \\
& \text{-5 0 10} \\
& \text{ 8 -6 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$ = $\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]$ -- (C)
Now, to prove that (A+B) C = AC + BC, on the LHS, we have (by (C)) $\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]$ .
Now, on the RHS, we have AC + BC, thus we add the matrices obtained from (1) and (2), thus, we have,
= AC + BC
= \[\left[ \begin{align}
& 9 \\
& 12 \\
& 30 \\
\end{align} \right]\] + \[\left[ \begin{align}
& {1} \\
& {8} \\
& {-2} \\
\end{align} \right]\]
= \[\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]\] -- (D)
Now, from (C) and (D), we can conclude that LHS = RHS.
Note: While performing multiplication of two matrices, we should remember that the number of columns of the first matrix should be the same as the number of rows of the second matrix. Similarly, while addition, we should keep in mind that both the matrices should have the same number of rows and columns. If these conditions cannot be met, we cannot perform the required operations.
Complete step-by-step answer:
We solve this problem by understanding how we can perform the addition operation first. For a 3$\times$3 matrix, we add two matrices by adding the corresponding entries of both matrices together. One should keep in mind that both the matrices we add should have the same number of rows and columns. This is explained through the example below -
$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ + $\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ = $\left[ \begin{align}
& \text{0 12 14} \\
& \text{-12 0 16} \\
& \text{14 -16 0} \\
\end{align} \right]$ -- (1)
Now, we also understand how to perform matrix multiplication operations. In this case, since we will always multiply 3 $\times $ 3 and 3 $\times $ 1 together, we use the following formula, we have,
$\left[ \begin{align}
& \text{a b c} \\
& \text{d e f} \\
& \text{g h i} \\
\end{align} \right]$$\left[ \begin{align}
& x \\
& y \\
& z \\
\end{align} \right]$ = \[\left[ \begin{align}
& \left( ax+by+cz \right) \\
& \left( dx+ey+fz \right) \\
& \left( gx+hy+iz \right) \\
\end{align} \right]\] -- (2)
We will use this to multiply any two matrices and compare the numbers in these matrices with a, b, c, d, e, f, g, h and i.
Now, we calculate AC using the formula given by (2), we have,
=$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$= \[\left[ \begin{align}
& 9 \\
& 12 \\
& 30 \\
\end{align} \right]\] -- (A)
Also, we similarly calculate BC, we get,
=$\left[ \begin{align}
& \text{0 1 1} \\
& \text{1 0 2} \\
& \text{1 2 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$= \[\left[ \begin{align}
& {1} \\
& {8} \\
& {-2} \\
\end{align} \right]\] -- (B)
We now calculate (A+B) C, we first start with calculating (A+B), we do this by calculating by using the formula given by (1), we have,
$\left[ \begin{align}
& \text{0 6 7} \\
& \text{-6 0 8} \\
& \text{7 -8 0} \\
\end{align} \right]$ + $\left[ \begin{align}
& \text{0 1 1} \\
& \text{1 0 2} \\
& \text{1 2 0} \\
\end{align} \right]$ = $\left[ \begin{align}
& \text{0 7 8} \\
& \text{-5 0 10} \\
& \text{ 8 -6 0} \\
\end{align} \right]$
Now, we multiply this matrix by matrix C. We have,
= $\left[ \begin{align}
& \text{0 7 8} \\
& \text{-5 0 10} \\
& \text{ 8 -6 0} \\
\end{align} \right]$$\left[ \begin{align}
& {2} \\
& {-2} \\
& {3} \\
\end{align} \right]$ = $\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]$ -- (C)
Now, to prove that (A+B) C = AC + BC, on the LHS, we have (by (C)) $\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]$ .
Now, on the RHS, we have AC + BC, thus we add the matrices obtained from (1) and (2), thus, we have,
= AC + BC
= \[\left[ \begin{align}
& 9 \\
& 12 \\
& 30 \\
\end{align} \right]\] + \[\left[ \begin{align}
& {1} \\
& {8} \\
& {-2} \\
\end{align} \right]\]
= \[\left[ \begin{align}
& 10 \\
& 20 \\
& 28 \\
\end{align} \right]\] -- (D)
Now, from (C) and (D), we can conclude that LHS = RHS.
Note: While performing multiplication of two matrices, we should remember that the number of columns of the first matrix should be the same as the number of rows of the second matrix. Similarly, while addition, we should keep in mind that both the matrices should have the same number of rows and columns. If these conditions cannot be met, we cannot perform the required operations.
Recently Updated Pages
If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

