
By what rational number should we multiply $ \dfrac{20}{-9} $ . So that the product may be $ \dfrac{-5}{9} $ ?
Answer
422.1k+ views
Hint: We first try to find the operation which can be applied to find the required number. We divide $ \dfrac{-5}{9} $ by $ \dfrac{20}{-9} $ . We change from division to multiplication. We find the simplified form of the solution.
Complete step by step solution:
We find the required number by dividing $ \dfrac{-5}{9} $ by $ \dfrac{20}{-9} $ .
Therefore, the number will be $ \dfrac{-5}{9}\div \dfrac{20}{-9} $ .
We need to be careful about the change of operation from division of multiplication. This process also changes the fraction to its inverse form.
Therefore, $ \dfrac{-5}{9}\div \dfrac{20}{-9}=\dfrac{-5}{9}\times \dfrac{-9}{20}=\dfrac{45}{180} $ .
We need to find the simplified form of $ \dfrac{45}{180} $ .
For any fraction $ \dfrac{p}{q} $ , we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $ \dfrac{{}^{p}/{}_{d}}{{}^{q}/{}_{d}} $ .
For our given fraction $ \dfrac{45}{180} $ , the G.C.D of the denominator and the numerator is 45.
$ \begin{align}
& 3\left| \!{\underline {\,
45,180 \,}} \right. \\
& 3\left| \!{\underline {\,
15,60 \,}} \right. \\
& 5\left| \!{\underline {\,
5,20 \,}} \right. \\
& 1\left| \!{\underline {\,
1,4 \,}} \right. \\
\end{align} $
The GCD is $ 3\times 3\times 5=45 $ .
Now we divide both the denominator and the numerator with 45 and get $ \dfrac{{}^{45}/{}_{45}}{{}^{180}/{}_{45}}=\dfrac{1}{4} $ .
The required number is $ \dfrac{1}{4} $ .
So, the correct answer is “ $ \dfrac{1}{4} $ ”.
Note: The process is similar for both proper and improper fractions. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case. Also, we can only apply the process on the proper fraction part of a mixed fraction.
Complete step by step solution:
We find the required number by dividing $ \dfrac{-5}{9} $ by $ \dfrac{20}{-9} $ .
Therefore, the number will be $ \dfrac{-5}{9}\div \dfrac{20}{-9} $ .
We need to be careful about the change of operation from division of multiplication. This process also changes the fraction to its inverse form.
Therefore, $ \dfrac{-5}{9}\div \dfrac{20}{-9}=\dfrac{-5}{9}\times \dfrac{-9}{20}=\dfrac{45}{180} $ .
We need to find the simplified form of $ \dfrac{45}{180} $ .
For any fraction $ \dfrac{p}{q} $ , we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $ \dfrac{{}^{p}/{}_{d}}{{}^{q}/{}_{d}} $ .
For our given fraction $ \dfrac{45}{180} $ , the G.C.D of the denominator and the numerator is 45.
$ \begin{align}
& 3\left| \!{\underline {\,
45,180 \,}} \right. \\
& 3\left| \!{\underline {\,
15,60 \,}} \right. \\
& 5\left| \!{\underline {\,
5,20 \,}} \right. \\
& 1\left| \!{\underline {\,
1,4 \,}} \right. \\
\end{align} $
The GCD is $ 3\times 3\times 5=45 $ .
Now we divide both the denominator and the numerator with 45 and get $ \dfrac{{}^{45}/{}_{45}}{{}^{180}/{}_{45}}=\dfrac{1}{4} $ .
The required number is $ \dfrac{1}{4} $ .
So, the correct answer is “ $ \dfrac{1}{4} $ ”.
Note: The process is similar for both proper and improper fractions. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case. Also, we can only apply the process on the proper fraction part of a mixed fraction.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
