
By the principle of mathematical induction, prove that for \[n\ge 1\], \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\].
Answer
580.2k+ views
Hint: As the given expression as P (n). Prove that the expression is true for n =1. Now, assume that P (n) is true for n = m and in the next prove that P (n) is true for, n = m + 1. Once P (n) is proved true for, n = m + 1 then we can say that the expression: - \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\] is true for all \[n\ge 1\].
Complete step by step answer:
Hence, we have to prove that: - \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\] is true for all \[n\ge 1\], using the principle of mathematical induction.
Let us assume the given expression as P (n).
\[\Rightarrow P\left( n \right)={{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\]
Let us check whether P (n) is true for n = 1 or not. So, for n = 1, we have,
L.H.S. = \[{{1}^{2}}=1\]
R.H.S. = \[\dfrac{1\left( 2\times 1-1 \right)\left( 2\times 1+1 \right)}{3}=\dfrac{3}{3}=1\]
Hence, P (n) is true for n = 1.
Now, assuming that P (n) is true for n = m, we have,
\[\Rightarrow {{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2m-1 \right)}^{2}}=\dfrac{m\left( 2m-1 \right)\left( 2m+1 \right)}{3}\] - (1)
Now let us check for, n = m + 1.
L.H.S = \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2m-1 \right)}^{2}}+{{\left( 2m+1 \right)}^{2}}\]
Using relation (i), we have,
L.H.S. = \[\dfrac{m\left( 2m-1 \right)\left( 2m+1 \right)}{3}+{{\left( 2m+1 \right)}^{2}}\]
\[\begin{align}
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ m\left( 2m-1 \right)+\left( 2m+1 \right)\times 3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ 2{{m}^{2}}-m+6m+3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ 2{{m}^{2}}+5m+3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)\left( m+1 \right)\left( 2m+3 \right)}{3} \\
& \Rightarrow R.H.S.=\dfrac{\left( m+1 \right)\left( 2m+2-1 \right)\left( 2m+2+1 \right)}{3} \\
& \Rightarrow R.H.S.=\dfrac{\left( m+1 \right)\left( 2m+1 \right)\left( 2m+3 \right)}{3} \\
\end{align}\]
Clearly, we can see that for n = m + 1, L.H.S. = R.H.S, so P (n) is true for n = m + 1.
Hence, P (n) will be true for all \[n\ge 1\]. Hence proved.
Note: One may note that we have to follow the basic approach to solve a question by mathematical induction. First we need to prove the result for n = 1, then assume that it is true for n = m and then again prove that P (n) is true for n = m + 1, using the assumed relation. If any of the steps is missed then the proof is considered as incomplete proof.
Complete step by step answer:
Hence, we have to prove that: - \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\] is true for all \[n\ge 1\], using the principle of mathematical induction.
Let us assume the given expression as P (n).
\[\Rightarrow P\left( n \right)={{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2n-1 \right)}^{2}}=\dfrac{n\left( 2n-1 \right)\left( 2n+1 \right)}{3}\]
Let us check whether P (n) is true for n = 1 or not. So, for n = 1, we have,
L.H.S. = \[{{1}^{2}}=1\]
R.H.S. = \[\dfrac{1\left( 2\times 1-1 \right)\left( 2\times 1+1 \right)}{3}=\dfrac{3}{3}=1\]
Hence, P (n) is true for n = 1.
Now, assuming that P (n) is true for n = m, we have,
\[\Rightarrow {{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2m-1 \right)}^{2}}=\dfrac{m\left( 2m-1 \right)\left( 2m+1 \right)}{3}\] - (1)
Now let us check for, n = m + 1.
L.H.S = \[{{1}^{2}}+{{3}^{2}}+{{5}^{2}}+.......+{{\left( 2m-1 \right)}^{2}}+{{\left( 2m+1 \right)}^{2}}\]
Using relation (i), we have,
L.H.S. = \[\dfrac{m\left( 2m-1 \right)\left( 2m+1 \right)}{3}+{{\left( 2m+1 \right)}^{2}}\]
\[\begin{align}
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ m\left( 2m-1 \right)+\left( 2m+1 \right)\times 3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ 2{{m}^{2}}-m+6m+3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)}{3}\left[ 2{{m}^{2}}+5m+3 \right] \\
& \Rightarrow L.H.S.=\dfrac{\left( 2m+1 \right)\left( m+1 \right)\left( 2m+3 \right)}{3} \\
& \Rightarrow R.H.S.=\dfrac{\left( m+1 \right)\left( 2m+2-1 \right)\left( 2m+2+1 \right)}{3} \\
& \Rightarrow R.H.S.=\dfrac{\left( m+1 \right)\left( 2m+1 \right)\left( 2m+3 \right)}{3} \\
\end{align}\]
Clearly, we can see that for n = m + 1, L.H.S. = R.H.S, so P (n) is true for n = m + 1.
Hence, P (n) will be true for all \[n\ge 1\]. Hence proved.
Note: One may note that we have to follow the basic approach to solve a question by mathematical induction. First we need to prove the result for n = 1, then assume that it is true for n = m and then again prove that P (n) is true for n = m + 1, using the assumed relation. If any of the steps is missed then the proof is considered as incomplete proof.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

