
By the definition of the definite integral, the value of $\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)$ is
(a) log 2
(b) $\dfrac{1}{5}\log 2$
(c) $\dfrac{1}{4}\log 2$
(d) $\dfrac{1}{3}\log 2$
Answer
569.4k+ views
Hint: Divide all the numerators and denominators of different terms by ${{n}^{5}}$ . In the numerator write the expressions as $\dfrac{1}{n}\left( \dfrac{{{1}^{4}}}{{{n}^{4}}} \right),\dfrac{1}{n}\left( \dfrac{{{2}^{4}}}{{{n}^{4}}} \right),\dfrac{1}{n}\left( \dfrac{{{3}^{4}}}{{{n}^{4}}} \right)$ and so on. Now, write the expression using sigma sign $\Sigma $ as $\dfrac{1}{n}f\left( \dfrac{r}{n} \right)$ , where r ranges from 1 to n. Now, convert the expression into a definite integral by replacing $\dfrac{r}{n}$ with x and $\dfrac{1}{n}$ with dx. Determine the limits of the integral by substituting r = 0 and r = n for $n \to \infty $ in the ratio $\dfrac{r}{n}$. Solve the integral to get the answer.
Complete step-by-step solution:
Here, we have been asked to find the value of the expression $\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)$. So, let us assume its value to be $I$. so, we have
$\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)$
Dividing the numerators and denominators of all the terms with ${{n}^{5}}$, we get,
$\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\left( \dfrac{{{1}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{1}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{2}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{2}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{3}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{3}^{5}}}{{{n}^{5}}}+1}+......+\dfrac{\left( \dfrac{{{n}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{n}^{5}}}{{{n}^{5}}}+1} \right)$
The above expression can be written as
\[\begin{align}
& \Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\dfrac{1}{n}{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{\dfrac{1}{n}{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \\
& \Rightarrow I=\displaystyle \lim_{n \to \infty }\left[ \dfrac{1}{n}\left( \dfrac{{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \right] \\
\end{align}\]
Using the summation notation $\Sigma $, we can write,
\[\Rightarrow I=\displaystyle \lim_{n \to \infty }\sum\limits_{r=1}^{n}{\dfrac{1}{n}\times \left[ \dfrac{{{\left( \dfrac{r}{n} \right)}^{4}}}{{{\left( \dfrac{r}{n} \right)}^{5}}+1} \right]}\]
The R.H.S of the above expression is of the form $\dfrac{1}{n}f\left( \dfrac{r}{n} \right)$, where $f\left( \dfrac{r}{n} \right)$ is a function of $\left( \dfrac{r}{n} \right)$. To convert this expression into fractional form, we replace $\left( \dfrac{r}{n} \right)$ with x and with $\dfrac{1}{n}$ dx. So, we have
$\Rightarrow I=\int\limits_{a}^{b}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$
Here, a and b are the lower and upper limits of the integral. Let us determine the values of a and b. Since n is tending to infinity, so we have
(i) At r = 0,
$\begin{align}
& \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\dfrac{0}{\infty }=0 \\
& \Rightarrow a=0 \\
\end{align}$
(ii) At r = n,
$\begin{align}
& \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\displaystyle \lim_{n \to \infty }\dfrac{n}{n}=1 \\
& \Rightarrow b=1 \\
\end{align}$
So the expression for I becomes,
$\Rightarrow I=\int\limits_{0}^{1}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$
Let us assume ${{x}^{5}}+1=k$ . Therefore, on differentiating both sides, we get
$\begin{align}
& \Rightarrow 5{{x}^{4}}dx=dk \\
& \Rightarrow {{x}^{4}}dx=\dfrac{dk}{5} \\
\end{align}$
Substituting the above relation in I, we get
$\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{\dfrac{dk}{5k}} \\
& \Rightarrow I=\dfrac{1}{5}\int\limits_{0}^{1}{\dfrac{dk}{k}} \\
\end{align}$
Now we know that $\int{\dfrac{dx}{x}=\ln x}$ , so we have
$\Rightarrow I=\dfrac{1}{5}\left[ \ln k \right]_{0}^{1}$
Substituting the value of ‘k’ back, we get
$\Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{x}^{5}}+1 \right) \right]_{0}^{1}$
Now, substituting the limits, we get
$\begin{align}
& \Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{1}^{5}}+1 \right)-\ln \left( {{0}^{5}}+1 \right) \right] \\
& \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-\ln 1 \right] \\
& \because \ln 1=0 \\
& \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-0 \right] \\
& \therefore I=\dfrac{1}{5}\ln 2 \\
\end{align}$
Hence, option (b) is the correct answer.
Note: One may note that when we have substituted ${{x}^{5}}+1=k$, we have not changed the limits of the integration. This is because at last, we have substituted back the value of k in terms of x. If we would not have substituted back the value of k then only the change of limits would have been mandatory. You must remember the process to change the limit into a definite integral otherwise you will not be able to solve this question.
Complete step-by-step solution:
Here, we have been asked to find the value of the expression $\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)$. So, let us assume its value to be $I$. so, we have
$\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{{{1}^{4}}}{{{1}^{5}}+{{n}^{5}}}+\dfrac{{{2}^{4}}}{{{2}^{5}}+{{n}^{5}}}+\dfrac{{{3}^{4}}}{{{3}^{5}}+{{n}^{5}}}+......+\dfrac{{{n}^{4}}}{{{n}^{5}}+{{n}^{5}}} \right)$
Dividing the numerators and denominators of all the terms with ${{n}^{5}}$, we get,
$\Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\left( \dfrac{{{1}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{1}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{2}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{2}^{5}}}{{{n}^{5}}}+1}+\dfrac{\left( \dfrac{{{3}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{3}^{5}}}{{{n}^{5}}}+1}+......+\dfrac{\left( \dfrac{{{n}^{4}}}{{{n}^{5}}} \right)}{\dfrac{{{n}^{5}}}{{{n}^{5}}}+1} \right)$
The above expression can be written as
\[\begin{align}
& \Rightarrow I=\displaystyle \lim_{n \to \infty }\left( \dfrac{\dfrac{1}{n}{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{\dfrac{1}{n}{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{\dfrac{1}{n}{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \\
& \Rightarrow I=\displaystyle \lim_{n \to \infty }\left[ \dfrac{1}{n}\left( \dfrac{{{\left( \dfrac{1}{n} \right)}^{4}}}{{{\left( \dfrac{1}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{2}{n} \right)}^{4}}}{{{\left( \dfrac{2}{n} \right)}^{5}}+1}+\dfrac{{{\left( \dfrac{3}{n} \right)}^{4}}}{{{\left( \dfrac{3}{n} \right)}^{5}}+1}+......+\dfrac{{{\left( \dfrac{n}{n} \right)}^{4}}}{{{\left( \dfrac{n}{n} \right)}^{5}}+1} \right) \right] \\
\end{align}\]
Using the summation notation $\Sigma $, we can write,
\[\Rightarrow I=\displaystyle \lim_{n \to \infty }\sum\limits_{r=1}^{n}{\dfrac{1}{n}\times \left[ \dfrac{{{\left( \dfrac{r}{n} \right)}^{4}}}{{{\left( \dfrac{r}{n} \right)}^{5}}+1} \right]}\]
The R.H.S of the above expression is of the form $\dfrac{1}{n}f\left( \dfrac{r}{n} \right)$, where $f\left( \dfrac{r}{n} \right)$ is a function of $\left( \dfrac{r}{n} \right)$. To convert this expression into fractional form, we replace $\left( \dfrac{r}{n} \right)$ with x and with $\dfrac{1}{n}$ dx. So, we have
$\Rightarrow I=\int\limits_{a}^{b}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$
Here, a and b are the lower and upper limits of the integral. Let us determine the values of a and b. Since n is tending to infinity, so we have
(i) At r = 0,
$\begin{align}
& \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\dfrac{0}{\infty }=0 \\
& \Rightarrow a=0 \\
\end{align}$
(ii) At r = n,
$\begin{align}
& \Rightarrow \displaystyle \lim_{n \to \infty }\dfrac{r}{n}=\displaystyle \lim_{n \to \infty }\dfrac{n}{n}=1 \\
& \Rightarrow b=1 \\
\end{align}$
So the expression for I becomes,
$\Rightarrow I=\int\limits_{0}^{1}{\left( \dfrac{{{x}^{4}}}{{{x}^{5}}+1} \right)}dx$
Let us assume ${{x}^{5}}+1=k$ . Therefore, on differentiating both sides, we get
$\begin{align}
& \Rightarrow 5{{x}^{4}}dx=dk \\
& \Rightarrow {{x}^{4}}dx=\dfrac{dk}{5} \\
\end{align}$
Substituting the above relation in I, we get
$\begin{align}
& \Rightarrow I=\int\limits_{0}^{1}{\dfrac{dk}{5k}} \\
& \Rightarrow I=\dfrac{1}{5}\int\limits_{0}^{1}{\dfrac{dk}{k}} \\
\end{align}$
Now we know that $\int{\dfrac{dx}{x}=\ln x}$ , so we have
$\Rightarrow I=\dfrac{1}{5}\left[ \ln k \right]_{0}^{1}$
Substituting the value of ‘k’ back, we get
$\Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{x}^{5}}+1 \right) \right]_{0}^{1}$
Now, substituting the limits, we get
$\begin{align}
& \Rightarrow I=\dfrac{1}{5}\left[ \ln \left( {{1}^{5}}+1 \right)-\ln \left( {{0}^{5}}+1 \right) \right] \\
& \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-\ln 1 \right] \\
& \because \ln 1=0 \\
& \Rightarrow I=\dfrac{1}{5}\left[ \ln 2-0 \right] \\
& \therefore I=\dfrac{1}{5}\ln 2 \\
\end{align}$
Hence, option (b) is the correct answer.
Note: One may note that when we have substituted ${{x}^{5}}+1=k$, we have not changed the limits of the integration. This is because at last, we have substituted back the value of k in terms of x. If we would not have substituted back the value of k then only the change of limits would have been mandatory. You must remember the process to change the limit into a definite integral otherwise you will not be able to solve this question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

