
Balance equations by oxidation number method or ion electron method.
\[\begin{array}{*{35}{l}}
S+HN{{O}_{3}}\to {{H}_{2}}S{{O}_{4}}+N{{O}_{2}}+{{H}_{2}}O \\
F{{e}^{2+}}+MnO_{4}^{-}+{{H}^{+}}\to F{{e}^{3+}}+M{{n}^{2+}}+{{H}_{2}}O \\
\end{array}\]
Answer
567.6k+ views
Hint: Oxidation number method is the method used to balance the chemical reaction based on their oxidation state. The idea behind the method is electrons transferred between the charged atoms or molecules.
Complete answer:
- In the question it is given that there are two chemical redox reactions.
- We have to balance the given redox reactions by using the oxidation number method.
- Coming to the first chemical reaction
\[S+HN{{O}_{3}}\to {{H}_{2}}S{{O}_{4}}+N{{O}_{2}}+{{H}_{2}}O\]
- In the first step we have to assign the oxidation number of all the atoms in the given chemical reaction.
\[\overset{0}{\mathop{S}}\,+\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Divide the given chemical reaction into two half-reactions (one half-reaction for oxidation and other for reduction reaction).
Oxidation reaction: \[\overset{0}{\mathop{S}}\,\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}\]
- In the next step balance the charge on both sides.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}+{{H}^{+}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}\]
- Now balance the oxygen atoms on both the sides.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}+{{H}^{+}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+{{H}_{2}}O\]
- In the next step we have to make the electrons gained or lost in oxidation and reduction to be equal.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[6\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+6{{e}^{-}}+{{H}^{+}}\to 6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+6{{H}_{2}}O\]
- Now add the two half-reactions and make a single reaction.
\[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O+6\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+6{{e}^{-}}+{{H}^{+}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}+6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+6{{H}_{2}}O\]
- Simplify the above equation by removing the common things on both sides. \[\]
\[\overset{0}{\mathop{S}}\,+\overset{+1}{\mathop{6H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+2{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Therefore the balanced chemical equation by using the oxidation number method is as follows.
\[S+6HN{{O}_{3}}\to {{H}_{2}}S{{O}_{4}}+6N{{O}_{2}}+2{{H}_{2}}O\]
- Now coming to the second given equation
\[F{{e}^{2+}}+MnO_{4}^{-}+{{H}^{+}}\to F{{e}^{3+}}+M{{n}^{2+}}+{{H}_{2}}O\]
- In the first step we have to assign the oxidation number of all the atoms in the given chemical reaction.
\[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+{{H}^{+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Divide the given chemical reaction into two half-reactions (one half-reaction for oxidation and other for reduction reaction).
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}\]
- In the next step balance the charge on both sides.
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}\]
- Now balance the oxygen atoms on both the sides.
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- In the next step we have to make the electrons gained or lost in oxidation and reduction to be equal.
Oxidation reaction: \[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+5{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Now add the two half-reactions and make a single reaction.
\[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+5{{e}^{-}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Simplify the above equation by removing the common things on both sides.
\[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+8{{H}^{+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Therefore the balanced chemical equation by using the oxidation number method is as follows.
\[F{{e}^{2+}}+MnO_{4}^{-}+8{{H}^{+}}\to 5F{{e}^{3+}}+M{{n}^{2+}}+4{{H}_{2}}O\]
Note:
In the oxidation number method first we have to divide the chemical reaction into two halves (oxidation and reduction) then we have to follow each and every step carefully at the time of balancing the charge, and balancing the oxygen atoms.
Complete answer:
- In the question it is given that there are two chemical redox reactions.
- We have to balance the given redox reactions by using the oxidation number method.
- Coming to the first chemical reaction
\[S+HN{{O}_{3}}\to {{H}_{2}}S{{O}_{4}}+N{{O}_{2}}+{{H}_{2}}O\]
- In the first step we have to assign the oxidation number of all the atoms in the given chemical reaction.
\[\overset{0}{\mathop{S}}\,+\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Divide the given chemical reaction into two half-reactions (one half-reaction for oxidation and other for reduction reaction).
Oxidation reaction: \[\overset{0}{\mathop{S}}\,\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}\]
- In the next step balance the charge on both sides.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}+{{H}^{+}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}\]
- Now balance the oxygen atoms on both the sides.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+{{e}^{-}}+{{H}^{+}}\to \overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+{{H}_{2}}O\]
- In the next step we have to make the electrons gained or lost in oxidation and reduction to be equal.
Oxidation reaction: \[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}\]
Reduction reaction: \[6\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+6{{e}^{-}}+{{H}^{+}}\to 6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+6{{H}_{2}}O\]
- Now add the two half-reactions and make a single reaction.
\[\overset{0}{\mathop{S}}\,+4{{H}_{2}}O+6\overset{+1}{\mathop{H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}+6{{e}^{-}}+{{H}^{+}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6{{e}^{-}}+6{{H}^{+}}+6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+6{{H}_{2}}O\]
- Simplify the above equation by removing the common things on both sides. \[\]
\[\overset{0}{\mathop{S}}\,+\overset{+1}{\mathop{6H}}\,\overset{+5}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{3}}\to {{\overset{+1}{\mathop{H}}\,}_{2}}\overset{+6}{\mathop{S}}\,{{\overset{-2}{\mathop{O}}\,}_{4}}+6\overset{+4}{\mathop{N}}\,{{\overset{-2}{\mathop{O}}\,}_{2}}+2{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Therefore the balanced chemical equation by using the oxidation number method is as follows.
\[S+6HN{{O}_{3}}\to {{H}_{2}}S{{O}_{4}}+6N{{O}_{2}}+2{{H}_{2}}O\]
- Now coming to the second given equation
\[F{{e}^{2+}}+MnO_{4}^{-}+{{H}^{+}}\to F{{e}^{3+}}+M{{n}^{2+}}+{{H}_{2}}O\]
- In the first step we have to assign the oxidation number of all the atoms in the given chemical reaction.
\[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+{{H}^{+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+{{\overset{+1}{\mathop{H}}\,}_{2}}\overset{-2}{\mathop{O}}\,\]
- Divide the given chemical reaction into two half-reactions (one half-reaction for oxidation and other for reduction reaction).
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}\]
- In the next step balance the charge on both sides.
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}\]
- Now balance the oxygen atoms on both the sides.
Oxidation reaction: \[{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to {{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- In the next step we have to make the electrons gained or lost in oxidation and reduction to be equal.
Oxidation reaction: \[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+5{{e}^{-}}\]
Reduction reaction: \[\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to {{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Now add the two half-reactions and make a single reaction.
\[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+5{{e}^{-}}+8{{H}^{+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+5{{e}^{-}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Simplify the above equation by removing the common things on both sides.
\[5{{\overset{+2}{\mathop{Fe}}\,}^{2+}}+\overset{+7}{\mathop{Mn}}\,\overset{-2}{\mathop{O}}\,_{4}^{-}+8{{H}^{+}}\to 5{{\overset{+3}{\mathop{Fe}}\,}^{3+}}+{{\overset{2+}{\mathop{Mn}}\,}^{2+}}+4{{H}_{2}}O\]
- Therefore the balanced chemical equation by using the oxidation number method is as follows.
\[F{{e}^{2+}}+MnO_{4}^{-}+8{{H}^{+}}\to 5F{{e}^{3+}}+M{{n}^{2+}}+4{{H}_{2}}O\]
Note:
In the oxidation number method first we have to divide the chemical reaction into two halves (oxidation and reduction) then we have to follow each and every step carefully at the time of balancing the charge, and balancing the oxygen atoms.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

