
At\[18^\circ {\text{C}}\], the mobilities of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions are \[6.6 \times {10^{ - 4}}\] and \[5.7 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\] at infinite dilution. Calculate the equivalent conductance of ammonium chlorate solution.
Answer
553.2k+ views
Hint: Using the ionic mobilities calculate the ionic conductance of both the ions. Use the Kohlrausch law and Calculate the equivalent conductance of ammonium chlorate solution.
Formula Used :
\[{\lambda _{^ + }} = F \times {U_{^ + }} \]
\[{\lambda _ - } = F \times {U_ - } \]
\[\Lambda 0 = {\lambda _{^ + }} + {\lambda _{^ - }}\]
Complete step by step answer:
Using the given mobilities of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions calculate the ionic conductance of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions as follows:
\[{\lambda _{^ + }} = F \times {U_{^ + }} \]
Here,
\[{\lambda _{^ + }}\]= ionic conductance of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\]ions
\[F\] = Charge = 96500 C
\[{U_{^ + }}\] = mobility of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] ion =\[6.6 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\]
So, \[{\lambda _{^ + }} = 96500{\text{ C}} \times 6.6 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}} = 63.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
\[{\lambda _ - } = F \times {U_ - }\]
Here,
\[{\lambda _ - }\] = ionic conductance of\[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions
\[{U_ - }\] = mobility of \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ion =\[5.7 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\]
So, \[{\lambda _ - } = 96500{\text{ C}} \times 5.7 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}} = 55{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
Kohlrausch law states that the equivalent conductance (\[\Lambda 0\]) of any electrolyte at infinite dilution is the sum of the ionic conductance of the cation and anion given by the electrolytes at infinite dilution.
\[\Lambda 0 = {\lambda _{^ + }} + {\lambda _{^ - }}\]
Now we have ionic conductance of the cation (\[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\]) and anion (\[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\]) so calculate the equivalent conductance ammonium chlorate solution as follows:
\[\Lambda 0 = 63.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}} + 55{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
\[\Lambda 0 = 118.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
Thus, the equivalent conductance of ammonium chlorate solution is \[118.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\].
Note:
Ionic conductance is directly proportional to the ionic mobility. The greater the mobility of ions greater is the ionic conductance. The equivalent conductance of an electrolyte also depends on the number of each type of ions present in the solution. Ammonium chlorate produces one \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and one \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ion in the solution.
Formula Used :
\[{\lambda _{^ + }} = F \times {U_{^ + }} \]
\[{\lambda _ - } = F \times {U_ - } \]
\[\Lambda 0 = {\lambda _{^ + }} + {\lambda _{^ - }}\]
Complete step by step answer:
Using the given mobilities of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions calculate the ionic conductance of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions as follows:
\[{\lambda _{^ + }} = F \times {U_{^ + }} \]
Here,
\[{\lambda _{^ + }}\]= ionic conductance of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\]ions
\[F\] = Charge = 96500 C
\[{U_{^ + }}\] = mobility of \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] ion =\[6.6 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\]
So, \[{\lambda _{^ + }} = 96500{\text{ C}} \times 6.6 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}} = 63.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
\[{\lambda _ - } = F \times {U_ - }\]
Here,
\[{\lambda _ - }\] = ionic conductance of\[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ions
\[{U_ - }\] = mobility of \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ion =\[5.7 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}}\]
So, \[{\lambda _ - } = 96500{\text{ C}} \times 5.7 \times {10^{ - 4}}{\text{c}}{{\text{m}}^{\text{2}}}{\text{vol}}{{\text{t}}^{{\text{ - 1}}}}{\text{se}}{{\text{c}}^{{\text{ - 1}}}} = 55{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
Kohlrausch law states that the equivalent conductance (\[\Lambda 0\]) of any electrolyte at infinite dilution is the sum of the ionic conductance of the cation and anion given by the electrolytes at infinite dilution.
\[\Lambda 0 = {\lambda _{^ + }} + {\lambda _{^ - }}\]
Now we have ionic conductance of the cation (\[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\]) and anion (\[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\]) so calculate the equivalent conductance ammonium chlorate solution as follows:
\[\Lambda 0 = 63.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}} + 55{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
\[\Lambda 0 = 118.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\]
Thus, the equivalent conductance of ammonium chlorate solution is \[118.69{\text{c}}{{\text{m}}^{\text{2}}}{\text{oh}}{{\text{m}}^{{\text{ - 1}}}}{\text{e}}{{\text{q}}^{{\text{ - 1}}}}\].
Note:
Ionic conductance is directly proportional to the ionic mobility. The greater the mobility of ions greater is the ionic conductance. The equivalent conductance of an electrolyte also depends on the number of each type of ions present in the solution. Ammonium chlorate produces one \[{\text{N}}{{\text{H}}_{\text{4}}}^{\text{ + }}\] and one \[{\text{Cl}}{{\text{O}}_{\text{4}}}^{\text{ - }}\] ion in the solution.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

