
At what rate percent per annum will the simple interest on a sum of money be $\dfrac{2}{5}$ of the amount in 10 yrs.
A. ${\text{4 % }}$
B .$\dfrac{{17}}{3}{\text{ % }}$
C. ${\text{6 % }}$
D. $\dfrac{{20}}{3}{\text{ % }}$
Answer
616.2k+ views
HINT- Proceed the solution of this question using result which is Amount is equal to sum of principle and simple interest. So applying the given condition of question in this result, we can find the desired rate of interest.
Complete step by step answer:
Let the principal(P) be x, and given time (T) =10 years and Rate(R)= r % per annum
We know that simple interest ${\text{SI}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}}$
So on putting the values in above formula
$ \Rightarrow {\text{SI}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}} = \dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}$
And we know that,
Amount = Principle + simple Interest
Amount = x + $\dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}$
In question, it is given that the simple interest on a sum of money be $\dfrac{2}{5}$ of the amount, therefore
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}} = \dfrac{2}{5}\left( {{\text{x + }}\dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}} \right)$
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{2}} \times {\text{x}} \times {\text{r}} \times 10}}{{5 \times 100}}$
On further solving
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{2}} \times {\text{x}} \times {\text{r}}}}{{5 \times 10}}$
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{x}} \times {\text{r}}}}{{25}}$
$ \Rightarrow {\text{x}} \times {\text{r}}\left( {\dfrac{1}{{10}} - \dfrac{1}{{25}}} \right) = \dfrac{{2{\text{x}}}}{5}$
$ \Rightarrow {\text{x}} \times {\text{r}}\left( {\dfrac{3}{{50}}} \right) = \dfrac{{2{\text{x}}}}{5}$
On cancelling x from both side
$ \Rightarrow {\text{r}}\left( {\dfrac{3}{{50}}} \right) = \dfrac{2}{5}$
On doing cross multiplication
$ \Rightarrow {\text{r}} = \dfrac{2}{5} \times \left( {\dfrac{{50}}{3}} \right) = \dfrac{{20}}{3}\% $
Hence rate percent per annum = $\dfrac{{20}}{3}\% $
Note- In such types of questions where we talk about simple interest, we should know that simple interest is calculated by multiplying the daily interest rate by the principal, by the number of days that pass by between payments. Simple interest is beneficial for those consumers who pay their loans on time or early each month. Auto loans and short-term personal loans are mainly based on simple interest loans
Complete step by step answer:
Let the principal(P) be x, and given time (T) =10 years and Rate(R)= r % per annum
We know that simple interest ${\text{SI}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}}$
So on putting the values in above formula
$ \Rightarrow {\text{SI}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}} = \dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}$
And we know that,
Amount = Principle + simple Interest
Amount = x + $\dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}$
In question, it is given that the simple interest on a sum of money be $\dfrac{2}{5}$ of the amount, therefore
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}} = \dfrac{2}{5}\left( {{\text{x + }}\dfrac{{{\text{x}} \times {\text{r}} \times 10}}{{100}}} \right)$
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{2}} \times {\text{x}} \times {\text{r}} \times 10}}{{5 \times 100}}$
On further solving
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{2}} \times {\text{x}} \times {\text{r}}}}{{5 \times 10}}$
$ \Rightarrow \dfrac{{{\text{x}} \times {\text{r}}}}{{10}} = \dfrac{{2{\text{x}}}}{5} + \dfrac{{{\text{x}} \times {\text{r}}}}{{25}}$
$ \Rightarrow {\text{x}} \times {\text{r}}\left( {\dfrac{1}{{10}} - \dfrac{1}{{25}}} \right) = \dfrac{{2{\text{x}}}}{5}$
$ \Rightarrow {\text{x}} \times {\text{r}}\left( {\dfrac{3}{{50}}} \right) = \dfrac{{2{\text{x}}}}{5}$
On cancelling x from both side
$ \Rightarrow {\text{r}}\left( {\dfrac{3}{{50}}} \right) = \dfrac{2}{5}$
On doing cross multiplication
$ \Rightarrow {\text{r}} = \dfrac{2}{5} \times \left( {\dfrac{{50}}{3}} \right) = \dfrac{{20}}{3}\% $
Hence rate percent per annum = $\dfrac{{20}}{3}\% $
Note- In such types of questions where we talk about simple interest, we should know that simple interest is calculated by multiplying the daily interest rate by the principal, by the number of days that pass by between payments. Simple interest is beneficial for those consumers who pay their loans on time or early each month. Auto loans and short-term personal loans are mainly based on simple interest loans
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


