
At the point of intersection of rectangular hyperbola \[xy={{c}^{2}}\]and the parabola ${{y}^{2}}=4ax$tangents to the rectangular hyperbola and the parabola make an angle $\theta $ and $\phi $respectively with the axis of X, then
A. $\theta ={{\tan }^{-1}}\left( -\tan \phi \right)$
B. $\phi ={{\tan }^{-1}}\left( -\tan \theta \right)$
C. $\theta =\dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \phi \right)$
D. $\phi =\dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)$
Answer
613.8k+ views
Hint: First you have to find the point of intersection of the rectangular hyperbola \[xy={{c}^{2}}\]and the parabola ${{y}^{2}}=4ax$ by solving these equations simultaneously.
After that, you need to find the equation of tangent to the hyperbola and the parabola at the point of intersection obtained above.
Complete step by step answer:
Equation of the tangent at point $P\left( {{x}_{1}},{{y}_{1}} \right)$on the rectangular hyperbola \[xy={{c}^{2}}\] is $\dfrac{x}{{{x}_{1}}}+\dfrac{y}{{{y}_{1}}}=2$
Equation of tangent at the point $P\left( {{x}_{1}},{{y}_{1}} \right)$ to the parabola ${{y}^{2}}=4ax$is $y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)$
After finding the equation of the tangents, convert the both equations in the form $y=mx+c$to get the values of their slopes i.e. “m”.
Now compare the slopes of both the equations of the tangents to get the relation between $\tan \theta $and $\tan \phi $.
Given hyperbola is \[xy={{c}^{2}}\] and parabola${{y}^{2}}=4ax$.
Point of intersection of the given rectangular hyperbola and parabola can be obtained.
By simultaneously solving the equations
\[\begin{align}
& xy={{c}^{2}}...............\left( 1 \right)and \\
& {{y}^{2}}=4ax.............\left( 2 \right) \\
\end{align}\]
From equation (1) we have;
$x=\dfrac{{{c}^{2}}}{y}$
Putting this value of x in equation (2), we get
$\begin{align}
& {{y}^{2}}=4a\left( \dfrac{{{c}^{2}}}{y} \right) \\
& {{y}^{3}}=4a{{c}^{2}} \\
& y={{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \\
\end{align}$
And now, $xy={{c}^{2}}$
Then $x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$
$\begin{align}
& \therefore x=\dfrac{{{c}^{2}}}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}} \\
& x=\dfrac{{{c}^{2}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}{{c}^{\dfrac{2}{3}}}} \\
& x=\dfrac{{{c}^{2-\dfrac{2}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \\
& x=\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \\
\end{align}$
Hence, the required point of intersection is $\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$(say this point is A)
The equation of tangent on the given hyperbola, $xy={{c}^{2}}$at this point of intersection A is;
Where, $A=\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$
$\begin{align}
& \dfrac{x}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}}+\dfrac{y}{\left\{ {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right\}}=2 \\
& \Rightarrow \dfrac{x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left( \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right)}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right\}}=2...............\left( 3 \right) \\
\end{align}$
Since, this point lies on the hyperbola $xy={{c}^{2}}$
Therefore, ${{x}_{1}}{{y}_{1}}={{c}^{2}}$
i.e. $\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$
Now, putting $\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$in equation (3)
We get;
$\begin{align}
& \dfrac{x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left( \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right)}{{{c}^{2}}}=2 \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}=2{{c}^{2}} \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left\{ \dfrac{{{c}^{2}}}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}} \right\}=2{{c}^{2}} \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}+y{{c}^{2}}=2{{c}^{2}} \\
& \Rightarrow y{{c}^{2}}=-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}x+2{{c}^{2}} \\
\end{align}$
Dividing both sides of equation by ${{c}^{2}}$, we get;
$y=\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}}{{{c}^{2}}}x+2$
Comparing this equation with$y=mx+c$, we get;
$\begin{align}
& m=\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}}{{{c}^{2}}} \\
& m=\dfrac{-{{\left( 4a \right)}^{\dfrac{2}{3}}}{{c}^{\dfrac{4}{3}}}}{{{c}^{2}}} \\
& m=-{{\left( 4a \right)}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}} \\
& m=-{{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{4}{3}}} \\
& m=-{{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{\left( 2 \right)}^{1}}{{\left( 2 \right)}^{\dfrac{1}{3}}} \\
& m=-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right] \\
\end{align}$
Hence, $\tan \theta =-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right]...................\left( 4 \right)$
Now, equation of tangent at point of intersection A on the parabola \[{{y}^{2}}=4ax\]is;
Where, $A=\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$
$\begin{align}
& y{{y}_{1}}=2a\left( x+{{x}_{1}} \right) \\
& \Rightarrow y{{\left( a{{c}^{2}} \right)}^{\dfrac{1}{3}}}=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}+x \right] \\
& \Rightarrow y{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}+x{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right] \\
& \Rightarrow y=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}+\left( x \right){{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4a \right)}^{\dfrac{2}{3}}}{{\left( c \right)}^{\dfrac{2}{3}}}} \right] \\
& \Rightarrow y=\dfrac{2a{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}x+\dfrac{2a{{c}^{\dfrac{4}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}...............\left( 5 \right) \\
\end{align}$
Comparing equation (5) with $y=m'x+c$
We get $m'=\dfrac{2a{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}$
$\tan \phi =m'={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}................\left( 6 \right)$
From equation (4) and (6), we get;
$\begin{align}
& \tan \theta =-2\tan \phi \\
& \Rightarrow \dfrac{-1}{2}\tan \theta =\tan \phi \\
& \Rightarrow \dfrac{1}{2}\left( -\tan \theta \right)=\tan \phi \\
\end{align}$
Taking ${{\tan }^{-1}}$on both sides;
$\begin{align}
& \Rightarrow \dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)={{\tan }^{-1}}\left( \tan \phi \right) \\
& \Rightarrow \dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)=\phi \\
\end{align}$
Note: This question can also be done easily by finding$\dfrac{dy}{dx}$, which is equal to the slope from the equation of the given curves at the point of intersection.
Method II: For hyperbola $xy={{c}^{2}}$
$\Rightarrow y+x\dfrac{dy}{dx}=0$(On differentiating both side with respect to x)
$\Rightarrow \dfrac{+dy}{dx}=\dfrac{-y}{x}$
Now, $\dfrac{dy}{dx}$ at point of intersection $A=\tan \theta $
$\begin{align}
& \tan \theta ={{\left. \dfrac{-y}{x} \right]}_{at\ A}} \\
& \tan \theta =\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}}=-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right]...............\left( 7 \right) \\
\end{align}$
Now for parabola, ${{y}^{2}}=4ax$
$\Rightarrow 2y\dfrac{dy}{dx}=4a$ (on differentiating both sides with the respect of x)
$\Rightarrow \dfrac{dy}{dx}=\dfrac{4a}{2y}=\dfrac{2a}{y}$
At point $A,\dfrac{dy}{dx}$is equal to$\tan \theta $
$\begin{align}
& \Rightarrow \tan \phi ={{\left. \dfrac{2a}{y} \right]}_{at\ A}} \\
& \Rightarrow \tan \phi =\dfrac{2a}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}}={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}...............\left( 8 \right) \\
\end{align}$
From equation (7) and (8) we get;
$\Rightarrow \dfrac{1}{2}\left( -\tan \theta \right)=\tan \phi $
Taking ${{\tan }^{-1}}$ on both sides;
$\theta =\dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)$
After that, you need to find the equation of tangent to the hyperbola and the parabola at the point of intersection obtained above.
Complete step by step answer:
Equation of the tangent at point $P\left( {{x}_{1}},{{y}_{1}} \right)$on the rectangular hyperbola \[xy={{c}^{2}}\] is $\dfrac{x}{{{x}_{1}}}+\dfrac{y}{{{y}_{1}}}=2$
Equation of tangent at the point $P\left( {{x}_{1}},{{y}_{1}} \right)$ to the parabola ${{y}^{2}}=4ax$is $y{{y}_{1}}=2a\left( x+{{x}_{1}} \right)$
After finding the equation of the tangents, convert the both equations in the form $y=mx+c$to get the values of their slopes i.e. “m”.
Now compare the slopes of both the equations of the tangents to get the relation between $\tan \theta $and $\tan \phi $.
Given hyperbola is \[xy={{c}^{2}}\] and parabola${{y}^{2}}=4ax$.
Point of intersection of the given rectangular hyperbola and parabola can be obtained.
By simultaneously solving the equations
\[\begin{align}
& xy={{c}^{2}}...............\left( 1 \right)and \\
& {{y}^{2}}=4ax.............\left( 2 \right) \\
\end{align}\]
From equation (1) we have;
$x=\dfrac{{{c}^{2}}}{y}$
Putting this value of x in equation (2), we get
$\begin{align}
& {{y}^{2}}=4a\left( \dfrac{{{c}^{2}}}{y} \right) \\
& {{y}^{3}}=4a{{c}^{2}} \\
& y={{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \\
\end{align}$
And now, $xy={{c}^{2}}$
Then $x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$
$\begin{align}
& \therefore x=\dfrac{{{c}^{2}}}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}} \\
& x=\dfrac{{{c}^{2}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}{{c}^{\dfrac{2}{3}}}} \\
& x=\dfrac{{{c}^{2-\dfrac{2}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \\
& x=\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \\
\end{align}$
Hence, the required point of intersection is $\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$(say this point is A)
The equation of tangent on the given hyperbola, $xy={{c}^{2}}$at this point of intersection A is;
Where, $A=\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$
$\begin{align}
& \dfrac{x}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}}+\dfrac{y}{\left\{ {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right\}}=2 \\
& \Rightarrow \dfrac{x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left( \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right)}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right\}}=2...............\left( 3 \right) \\
\end{align}$
Since, this point lies on the hyperbola $xy={{c}^{2}}$
Therefore, ${{x}_{1}}{{y}_{1}}={{c}^{2}}$
i.e. $\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$
Now, putting $\dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}\times {{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}={{c}^{2}}$in equation (3)
We get;
$\begin{align}
& \dfrac{x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left( \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right)}{{{c}^{2}}}=2 \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}=2{{c}^{2}} \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}+y\left\{ \dfrac{{{c}^{2}}}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}} \right\}=2{{c}^{2}} \\
& \Rightarrow x{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}+y{{c}^{2}}=2{{c}^{2}} \\
& \Rightarrow y{{c}^{2}}=-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}x+2{{c}^{2}} \\
\end{align}$
Dividing both sides of equation by ${{c}^{2}}$, we get;
$y=\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}}{{{c}^{2}}}x+2$
Comparing this equation with$y=mx+c$, we get;
$\begin{align}
& m=\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{2}{3}}}}{{{c}^{2}}} \\
& m=\dfrac{-{{\left( 4a \right)}^{\dfrac{2}{3}}}{{c}^{\dfrac{4}{3}}}}{{{c}^{2}}} \\
& m=-{{\left( 4a \right)}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}} \\
& m=-{{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{4}{3}}} \\
& m=-{{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{\left( 2 \right)}^{1}}{{\left( 2 \right)}^{\dfrac{1}{3}}} \\
& m=-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right] \\
\end{align}$
Hence, $\tan \theta =-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right]...................\left( 4 \right)$
Now, equation of tangent at point of intersection A on the parabola \[{{y}^{2}}=4ax\]is;
Where, $A=\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}},{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}} \right]$
$\begin{align}
& y{{y}_{1}}=2a\left( x+{{x}_{1}} \right) \\
& \Rightarrow y{{\left( a{{c}^{2}} \right)}^{\dfrac{1}{3}}}=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}}+x \right] \\
& \Rightarrow y{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}+x{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right] \\
& \Rightarrow y=2a\left[ \dfrac{{{c}^{\dfrac{4}{3}}}+\left( x \right){{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4a \right)}^{\dfrac{2}{3}}}{{\left( c \right)}^{\dfrac{2}{3}}}} \right] \\
& \Rightarrow y=\dfrac{2a{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}x+\dfrac{2a{{c}^{\dfrac{4}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}...............\left( 5 \right) \\
\end{align}$
Comparing equation (5) with $y=m'x+c$
We get $m'=\dfrac{2a{{\left( 4a \right)}^{\dfrac{1}{3}}}}{{{\left( 4ac \right)}^{\dfrac{2}{3}}}}={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}$
$\tan \phi =m'={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}................\left( 6 \right)$
From equation (4) and (6), we get;
$\begin{align}
& \tan \theta =-2\tan \phi \\
& \Rightarrow \dfrac{-1}{2}\tan \theta =\tan \phi \\
& \Rightarrow \dfrac{1}{2}\left( -\tan \theta \right)=\tan \phi \\
\end{align}$
Taking ${{\tan }^{-1}}$on both sides;
$\begin{align}
& \Rightarrow \dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)={{\tan }^{-1}}\left( \tan \phi \right) \\
& \Rightarrow \dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)=\phi \\
\end{align}$
Note: This question can also be done easily by finding$\dfrac{dy}{dx}$, which is equal to the slope from the equation of the given curves at the point of intersection.
Method II: For hyperbola $xy={{c}^{2}}$
$\Rightarrow y+x\dfrac{dy}{dx}=0$(On differentiating both side with respect to x)
$\Rightarrow \dfrac{+dy}{dx}=\dfrac{-y}{x}$
Now, $\dfrac{dy}{dx}$ at point of intersection $A=\tan \theta $
$\begin{align}
& \tan \theta ={{\left. \dfrac{-y}{x} \right]}_{at\ A}} \\
& \tan \theta =\dfrac{-{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}}{\left\{ \dfrac{{{c}^{\dfrac{4}{3}}}}{{{\left( 4a \right)}^{\dfrac{1}{3}}}} \right\}}=-2\left[ {{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}} \right]...............\left( 7 \right) \\
\end{align}$
Now for parabola, ${{y}^{2}}=4ax$
$\Rightarrow 2y\dfrac{dy}{dx}=4a$ (on differentiating both sides with the respect of x)
$\Rightarrow \dfrac{dy}{dx}=\dfrac{4a}{2y}=\dfrac{2a}{y}$
At point $A,\dfrac{dy}{dx}$is equal to$\tan \theta $
$\begin{align}
& \Rightarrow \tan \phi ={{\left. \dfrac{2a}{y} \right]}_{at\ A}} \\
& \Rightarrow \tan \phi =\dfrac{2a}{{{\left( 4a{{c}^{2}} \right)}^{\dfrac{1}{3}}}}={{a}^{\dfrac{2}{3}}}{{c}^{\dfrac{-2}{3}}}{{2}^{\dfrac{1}{3}}}...............\left( 8 \right) \\
\end{align}$
From equation (7) and (8) we get;
$\Rightarrow \dfrac{1}{2}\left( -\tan \theta \right)=\tan \phi $
Taking ${{\tan }^{-1}}$ on both sides;
$\theta =\dfrac{1}{2}{{\tan }^{-1}}\left( -\tan \theta \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

