
At some high temperature, \[{{\text{K}}_{\text{w}}}\]of water is ${{10}^{-13}}$. Then the $\text{pH}$ of the water at the same temperature is:
(A) $8.3$
(B) $\text{6}\text{.5}$
(C) $7.42$
(D) \[6\]
Answer
570.6k+ views
Hint: $\text{pH}$ is the negative logarithm of hydrogen ion concentration. It is the measure of acidic and basic nature of the solution.
On increasing temperature, both ${{\text{H}}^{\text{+}}}$ and $\text{O}{{\text{H}}^{\text{-}}}$concentration increases equally so, the water remain neutral but natural $\text{pH}$ change from $7$ to $6$ at ${{90}^{\circ }}C$.
Complete answer:
\[{{\text{K}}_{\text{w}}}\] is called an ionic product or dissociation constant of water. It is equal to the product of $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}]$$\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}]$. At constant temperature of${{25}^{\circ }}C$, the value of \[{{\text{K}}_{\text{w}}}\] is $1\times {{10}^{-14}}$.
${{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\,\text{+}\,\,\text{O}{{\text{H}}^{\text{-}}}$
\[{{\text{K}}_{\text{w}}}\text{=}\,\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }....\text{(i)}\]
..Ionization of water is an endothermic process, so increasing temperature degree of dissociation increases or both and concentration increases.
So, at high temperature \[{{\text{K}}_{\text{w}}}=\,{{10}^{-13}}\] is given
At any temperature $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}]$=$\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}]$because nature of water is neutral.
\[\begin{align}
& \text{p}{{\text{K}}_{\text{w}}}\text{=}\,\text{-log }\!\![\!\!\text{ }{{\text{K}}_{\text{w}}}\text{ }\!\!]\!\!\text{ } \\
& \text{p}{{\text{K}}_{w}}=\,-\log [1\times {{10}^{-13}}] \\
& \text{p}{{\text{K}}_{\text{w}}}\text{=}\,\text{13} \\
\end{align}\]
Thus from the equation … (i)
\[\begin{align}
& {{\text{K}}_{\text{w}}}\text{=}\,\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }....\text{(i)} \\
& \text{after}\,\text{taking}\,\text{-}\,\text{log}\,\text{in}\,\text{both}\,\text{side} \\
& \text{-log }{{\text{K}}_{\text{w}}}\text{=}\,\text{-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{-log }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,\, \\
& \text{p}{{\text{K}}_{\text{w}}}\,\text{=}\,\text{pH}\,\text{+}\,\text{pOH} \\
& \text{p}{{\text{K}}_{\text{w}}}\,\text{=}\,\text{2pH}\,\,\,\,\text{ }\!\!\{\!\!\text{ because}\,\text{for}\,\text{water}\,\text{pH=}\,\,\text{pOH }\!\!\}\!\!\text{ } \\
& \text{pH}\,\text{=}\,\frac{\text{p}{{\text{K}}_{\text{w}}}}{\text{2}} \\
& \text{pH}\,\,\text{=}\,\frac{\text{13}}{\text{2}} \\
& \text{pH}\,\,\text{=}\,\text{6}\text{.5} \\
\end{align}\]
So the option (B) will be the correct answer.
Additional information:
When an acid is added to water ${{\text{H}}^{\text{+}}}$ ion from acid combines with the $\text{O}{{\text{H}}^{\text{-}}}$ ions so that \[{{\text{K}}_{\text{w}}}\] remains constant. Thus addition of an acid decreases the conc. Of $\text{O}{{\text{H}}^{\text{-}}}$ ion and addition of base decreases the conc. of ${{\text{H}}^{\text{+}}}$ ions. In both cases the self-ionisation of water is suppressed due to the extra supply of ${H^+}$ and ${OH^-}$ ions.
Note:
Water is a very weak electrolyte, so ionisation of water increases with increasing the temperature. The addition of salt, acid or base does not change the value of\[{{\text{K}}_{\text{w}}}\], its value changes with temperature only. On increasing temperature $\text{pH}$ value always decreases.
On increasing temperature, both ${{\text{H}}^{\text{+}}}$ and $\text{O}{{\text{H}}^{\text{-}}}$concentration increases equally so, the water remain neutral but natural $\text{pH}$ change from $7$ to $6$ at ${{90}^{\circ }}C$.
Complete answer:
\[{{\text{K}}_{\text{w}}}\] is called an ionic product or dissociation constant of water. It is equal to the product of $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}]$$\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}]$. At constant temperature of${{25}^{\circ }}C$, the value of \[{{\text{K}}_{\text{w}}}\] is $1\times {{10}^{-14}}$.
${{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\,\text{+}\,\,\text{O}{{\text{H}}^{\text{-}}}$
\[{{\text{K}}_{\text{w}}}\text{=}\,\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }....\text{(i)}\]
..Ionization of water is an endothermic process, so increasing temperature degree of dissociation increases or both and concentration increases.
So, at high temperature \[{{\text{K}}_{\text{w}}}=\,{{10}^{-13}}\] is given
At any temperature $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}]$=$\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}]$because nature of water is neutral.
\[\begin{align}
& \text{p}{{\text{K}}_{\text{w}}}\text{=}\,\text{-log }\!\![\!\!\text{ }{{\text{K}}_{\text{w}}}\text{ }\!\!]\!\!\text{ } \\
& \text{p}{{\text{K}}_{w}}=\,-\log [1\times {{10}^{-13}}] \\
& \text{p}{{\text{K}}_{\text{w}}}\text{=}\,\text{13} \\
\end{align}\]
Thus from the equation … (i)
\[\begin{align}
& {{\text{K}}_{\text{w}}}\text{=}\,\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }....\text{(i)} \\
& \text{after}\,\text{taking}\,\text{-}\,\text{log}\,\text{in}\,\text{both}\,\text{side} \\
& \text{-log }{{\text{K}}_{\text{w}}}\text{=}\,\text{-log }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }\,\text{-log }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,\, \\
& \text{p}{{\text{K}}_{\text{w}}}\,\text{=}\,\text{pH}\,\text{+}\,\text{pOH} \\
& \text{p}{{\text{K}}_{\text{w}}}\,\text{=}\,\text{2pH}\,\,\,\,\text{ }\!\!\{\!\!\text{ because}\,\text{for}\,\text{water}\,\text{pH=}\,\,\text{pOH }\!\!\}\!\!\text{ } \\
& \text{pH}\,\text{=}\,\frac{\text{p}{{\text{K}}_{\text{w}}}}{\text{2}} \\
& \text{pH}\,\,\text{=}\,\frac{\text{13}}{\text{2}} \\
& \text{pH}\,\,\text{=}\,\text{6}\text{.5} \\
\end{align}\]
So the option (B) will be the correct answer.
Additional information:
When an acid is added to water ${{\text{H}}^{\text{+}}}$ ion from acid combines with the $\text{O}{{\text{H}}^{\text{-}}}$ ions so that \[{{\text{K}}_{\text{w}}}\] remains constant. Thus addition of an acid decreases the conc. Of $\text{O}{{\text{H}}^{\text{-}}}$ ion and addition of base decreases the conc. of ${{\text{H}}^{\text{+}}}$ ions. In both cases the self-ionisation of water is suppressed due to the extra supply of ${H^+}$ and ${OH^-}$ ions.
Note:
Water is a very weak electrolyte, so ionisation of water increases with increasing the temperature. The addition of salt, acid or base does not change the value of\[{{\text{K}}_{\text{w}}}\], its value changes with temperature only. On increasing temperature $\text{pH}$ value always decreases.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

