
Assuming ‘$x$’ to be so small that ${x^2}$ and higher powers of ‘$x$’ can be neglected, show that $\dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}{{\left( {16 - 3x} \right)}^{\dfrac{1}{2}}}}}{{{{\left( {8 + x} \right)}^{\dfrac{2}{3}}}}}$ is approximately equal to $1 - \dfrac{{305x}}{{96}}$.
Answer
583.8k+ views
Hint: In the given problem, we have to simplify the expression by neglecting ${x^2}$ and higher power of ‘$x$’ like ${x^3}$, ${x^4} \ldots \ldots $. For this, first we will convert each term in the form of ${\left( {1 + x} \right)^n}$ or ${\left( {1 - x} \right)^n}$. Then, we will use the expansion of ${\left( {1 + x} \right)^n}$ or ${\left( {1 - x} \right)^n}$ whatever is applicable. After neglecting ${x^2}$ and higher power of ‘$x$’, we can say that ${\left( {1 + x} \right)^n}$ is approximately equal to $1 + nx$ and ${\left( {1 - x} \right)^n}$ is approximately equal to $1 - nx$.
Complete step-by-step answer:
In this problem, the given expression is $\dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}{{\left( {16 - 3x} \right)}^{\dfrac{1}{2}}}}}{{{{\left( {8 + x} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 1 \right)$. Let us simplify the term ${\left( {16 - 3x} \right)^{\dfrac{1}{2}}}$ by taking $16$ common out. So, we can write
$\Rightarrow {\left( {16 - 3x} \right)^{\dfrac{1}{2}}}$
$ = {\left( {16} \right)^{\dfrac{1}{2}}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}$
$ = 4{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}} \cdots \cdots \left( 2 \right)$
Let us simplify the term ${\left( {8 + x} \right)^{\dfrac{2}{3}}}$ by taking $8$ common out. So, we can write
$\Rightarrow {\left( {8 + x} \right)^{\dfrac{2}{3}}}$
$ = {\left( 8 \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}$
$ = {\left( {{2^3}} \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}$
$ = 4{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}} \cdots \cdots \left( 3 \right)$
From $\left( 1 \right)$, $\left( 2 \right)$, $\left( 3 \right)$, we can rewrite the given expression. So, we get
$\Rightarrow \dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}4{{\left( {1 - \dfrac{{3x}}{{16}}} \right)}^{\dfrac{1}{2}}}}}{{4{{\left( {1 + \dfrac{x}{8}} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 4 \right)$
Let us simplify the expression $\left( 4 \right)$. So, we get ${\left( {1 + \dfrac{3}{4}x} \right)^{ - \,4}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}{\left( {1 + \dfrac{x}{8}} \right)^{ - \;\dfrac{2}{3}}} \cdots \cdots \left( 5 \right)$
Let us expand each term of expression $\left( 5 \right)$. Note that after neglecting ${x^2}$ and higher powers of ‘$x$’ , we can say that ${\left( {1 + x} \right)^n} \approx 1 + nx$ and ${\left( {1 - x} \right)^n} \approx 1 - nx$. Use this information in $\left( 5 \right)$, so we can write
$\Rightarrow \left[ {1 + \left( { - 4} \right)\left( {\dfrac{{3x}}{4}} \right)} \right]\left[ {1 - \dfrac{1}{2}\left( {\dfrac{{3x}}{{16}}} \right)} \right]\left[ {1 + \left( { - \dfrac{2}{3}} \right)\left( {\dfrac{x}{8}} \right)} \right]$
$ \approx \left( {1 - 3x} \right)\left( {1 - \dfrac{{3x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
Let us multiply all terms (brackets) of above expression. Note that we will neglect ${x^2}$ and higher powers of ‘$x$’. So we get
$\left( {1 - \dfrac{{3x}}{{32}} - 3x} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
$ \approx \left( {1 - \dfrac{{99x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
$ \approx 1 - \dfrac{x}{{12}} - \dfrac{{99x}}{{32}}$
$ \approx 1 - \dfrac{{8x}}{{96}} - \dfrac{{297x}}{{96}}$
$ \approx 1 - \dfrac{{305}}{{96}}x$
Note: Remember that the expression of ${\left( {1 + x} \right)^n}$ is given by ${\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \cdots \cdots $. Replace $x$ by $ - x$, so we can find expansion of ${\left( {1 - x} \right)^n}$.
Complete step-by-step answer:
In this problem, the given expression is $\dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}{{\left( {16 - 3x} \right)}^{\dfrac{1}{2}}}}}{{{{\left( {8 + x} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 1 \right)$. Let us simplify the term ${\left( {16 - 3x} \right)^{\dfrac{1}{2}}}$ by taking $16$ common out. So, we can write
$\Rightarrow {\left( {16 - 3x} \right)^{\dfrac{1}{2}}}$
$ = {\left( {16} \right)^{\dfrac{1}{2}}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}$
$ = 4{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}} \cdots \cdots \left( 2 \right)$
Let us simplify the term ${\left( {8 + x} \right)^{\dfrac{2}{3}}}$ by taking $8$ common out. So, we can write
$\Rightarrow {\left( {8 + x} \right)^{\dfrac{2}{3}}}$
$ = {\left( 8 \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}$
$ = {\left( {{2^3}} \right)^{\dfrac{2}{3}}}{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}}$
$ = 4{\left( {1 + \dfrac{x}{8}} \right)^{\dfrac{2}{3}}} \cdots \cdots \left( 3 \right)$
From $\left( 1 \right)$, $\left( 2 \right)$, $\left( 3 \right)$, we can rewrite the given expression. So, we get
$\Rightarrow \dfrac{{{{\left( {1 + \dfrac{3}{4}x} \right)}^{ - 4}}4{{\left( {1 - \dfrac{{3x}}{{16}}} \right)}^{\dfrac{1}{2}}}}}{{4{{\left( {1 + \dfrac{x}{8}} \right)}^{\dfrac{2}{3}}}}} \cdots \cdots \left( 4 \right)$
Let us simplify the expression $\left( 4 \right)$. So, we get ${\left( {1 + \dfrac{3}{4}x} \right)^{ - \,4}}{\left( {1 - \dfrac{{3x}}{{16}}} \right)^{\dfrac{1}{2}}}{\left( {1 + \dfrac{x}{8}} \right)^{ - \;\dfrac{2}{3}}} \cdots \cdots \left( 5 \right)$
Let us expand each term of expression $\left( 5 \right)$. Note that after neglecting ${x^2}$ and higher powers of ‘$x$’ , we can say that ${\left( {1 + x} \right)^n} \approx 1 + nx$ and ${\left( {1 - x} \right)^n} \approx 1 - nx$. Use this information in $\left( 5 \right)$, so we can write
$\Rightarrow \left[ {1 + \left( { - 4} \right)\left( {\dfrac{{3x}}{4}} \right)} \right]\left[ {1 - \dfrac{1}{2}\left( {\dfrac{{3x}}{{16}}} \right)} \right]\left[ {1 + \left( { - \dfrac{2}{3}} \right)\left( {\dfrac{x}{8}} \right)} \right]$
$ \approx \left( {1 - 3x} \right)\left( {1 - \dfrac{{3x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
Let us multiply all terms (brackets) of above expression. Note that we will neglect ${x^2}$ and higher powers of ‘$x$’. So we get
$\left( {1 - \dfrac{{3x}}{{32}} - 3x} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
$ \approx \left( {1 - \dfrac{{99x}}{{32}}} \right)\left( {1 - \dfrac{x}{{12}}} \right)$
$ \approx 1 - \dfrac{x}{{12}} - \dfrac{{99x}}{{32}}$
$ \approx 1 - \dfrac{{8x}}{{96}} - \dfrac{{297x}}{{96}}$
$ \approx 1 - \dfrac{{305}}{{96}}x$
Note: Remember that the expression of ${\left( {1 + x} \right)^n}$ is given by ${\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \cdots \cdots $. Replace $x$ by $ - x$, so we can find expansion of ${\left( {1 - x} \right)^n}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

