
Assuming $ 100\% $ ionization, the increasing order of the freezing point of the solution will be:
A) $ 0.10mol/kgB{a_3}{(P{O_4})_2} < 0.10mol/kgN{a_2}S{O_4} < 0.10mol/kgKCl $
B) $ 0.10mol/kgKCl < 0.10mol/kgN{a_2}S{O_4} < 0.10mol/kgB{a_3}{(P{O_4})_2} $
C) $ 0.10mol/kgN{a_2}S{O_4} < 0.10mol/kgB{a_3}{(P{O_4})_2} < 0.10mol/kgKCl $
D) $ 0.10mol/kgKCl < 0.10mol/kgB{a_3}{(P{O_4})_2} < 0.10mol/kgN{a_2}S{O_4} $
Answer
546.6k+ views
Hint: In order to arrange them in increasing order of their freezing point, we must calculate the Van’t Hoff factor. As here $ 100\% $ ionization is taking place, we have to calculate its degree of dissociation which is further used to calculate the freezing point.
Formula used
$ {T_f} = 273.15 - \Delta {T_f} $
And,
$ \Delta {T_f} = i \times {K_f} \times M $
Where, $ i $ = degree of dissociation
$ {K_f} $ = molal freezing point depression constant
$ M $ = concentration of solution
$ {T_f} $ = freezing point of the solution.
Complete step by step solution
Freezing point of a solution is defined as the temperature at which that solution gets converted into a solid. According to the question, there is $ 100\% $ ionization, so firstly we have to calculate the degree of dissociation of every solution.
In case of $ B{a_3}{(P{O_4})_2} $ ,
Degree of dissociation ( $ i $ ) = $ 5 $
So, the depression in freezing point will be given as:
$ \Delta {T_f} = i \times {K_f} \times M $
Where, $ i $ = degree of dissociation
$ {K_f} $ = molal freezing point depression constant
And $ M $ = concentration of solution
So, depression in freezing point in $ B{a_3}{(P{O_4})_2} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 5 \times 1.86 \times 0.1 \\
\Rightarrow 0.93 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ B{a_3}{(P{O_4})_2} $ will be:
$ \begin{gathered}
{T_{f(1)}} = (273.15 - 0.93)K \\
\Rightarrow 272.22K \\
\end{gathered} $
Now, in the case of $ N{a_2}S{O_4} $ ,
Degree of dissociation ( $ i $ ) = $ 3 $
So, depression in freezing point in $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 3 \times 1.86 \times 0.1 \\
\Rightarrow 0.558 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
{T_{f(2)}} = (273.15 - 0.558)K \\
\Rightarrow 272.592K \\
\end{gathered} $
Now, in the case of $ KCl $ ,
Degree of dissociation ( $ i $ ) = $ 2 $
So, depression in freezing point in $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 2 \times 1.86 \times 0.1 \\
\Rightarrow 0.372 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
{T_{f(3)}} = (273.15 - 0.372)K \\
\Rightarrow 272.778K \\
\end{gathered} $
Here we can see $ {T_{f(3)}} > {T_{f(2)}} > {T_{f(3)}} $
So, the order will be $ 0.10mol/kgKCl < 0.10mol/kgN{a_2}S{O_4} < 0.10mol/kgB{a_3}{(P{O_4})_2} $
Hence, Option B is correct.
Note
Van’t hoff factor is used to express the extent of association or dissociation of solutes in solution. It is defined as the ratio of normal molar mass to the observed molar mass of the solute. It is also the ratio of number of particles after dissociation or association to the number of particles without dissociation or association.
Formula used
$ {T_f} = 273.15 - \Delta {T_f} $
And,
$ \Delta {T_f} = i \times {K_f} \times M $
Where, $ i $ = degree of dissociation
$ {K_f} $ = molal freezing point depression constant
$ M $ = concentration of solution
$ {T_f} $ = freezing point of the solution.
Complete step by step solution
Freezing point of a solution is defined as the temperature at which that solution gets converted into a solid. According to the question, there is $ 100\% $ ionization, so firstly we have to calculate the degree of dissociation of every solution.
In case of $ B{a_3}{(P{O_4})_2} $ ,
Degree of dissociation ( $ i $ ) = $ 5 $
So, the depression in freezing point will be given as:
$ \Delta {T_f} = i \times {K_f} \times M $
Where, $ i $ = degree of dissociation
$ {K_f} $ = molal freezing point depression constant
And $ M $ = concentration of solution
So, depression in freezing point in $ B{a_3}{(P{O_4})_2} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 5 \times 1.86 \times 0.1 \\
\Rightarrow 0.93 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ B{a_3}{(P{O_4})_2} $ will be:
$ \begin{gathered}
{T_{f(1)}} = (273.15 - 0.93)K \\
\Rightarrow 272.22K \\
\end{gathered} $
Now, in the case of $ N{a_2}S{O_4} $ ,
Degree of dissociation ( $ i $ ) = $ 3 $
So, depression in freezing point in $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 3 \times 1.86 \times 0.1 \\
\Rightarrow 0.558 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
{T_{f(2)}} = (273.15 - 0.558)K \\
\Rightarrow 272.592K \\
\end{gathered} $
Now, in the case of $ KCl $ ,
Degree of dissociation ( $ i $ ) = $ 2 $
So, depression in freezing point in $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
\Rightarrow \Delta {T_f} = 2 \times 1.86 \times 0.1 \\
\Rightarrow 0.372 \\
\end{gathered} $
So, freezing point can be calculated by formula:
$ {T_f} = 273.15 - \Delta {T_f} $
So, freezing point of $ N{a_2}S{O_4} $ will be:
$ \begin{gathered}
{T_{f(3)}} = (273.15 - 0.372)K \\
\Rightarrow 272.778K \\
\end{gathered} $
Here we can see $ {T_{f(3)}} > {T_{f(2)}} > {T_{f(3)}} $
So, the order will be $ 0.10mol/kgKCl < 0.10mol/kgN{a_2}S{O_4} < 0.10mol/kgB{a_3}{(P{O_4})_2} $
Hence, Option B is correct.
Note
Van’t hoff factor is used to express the extent of association or dissociation of solutes in solution. It is defined as the ratio of normal molar mass to the observed molar mass of the solute. It is also the ratio of number of particles after dissociation or association to the number of particles without dissociation or association.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Which prominent US inventor was known as the Wizard class 12 social science CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

How is democracy better than other forms of government class 12 social science CBSE

