
What are the derivatives of the inverse trigonometric functions?
Answer
483.6k+ views
Hint: We need to find the derivative of the inverse trigonometric functions. We have direct formulae for the derivative of inverse trigonometric functions. To answer this question, we will list all the inverse trigonometric functions and their corresponding formulae for the derivative.
Complete step by step answer:
We denote the derivative of the function \[f\left( x \right)\] with respect to \[x\] as \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Let us first list all the inverse trigonometric functions.
We have six inverse trigonometric functions.
The following are the six inverse trigonometric functions:
\[{\sin ^{ - 1}}x,{\cos ^{ - 1}}x,{\tan ^{ - 1}}x,{\csc ^{ - 1}}x,{\sec ^{ - 1}}x,{\cot ^{ - 1}}x\]
Now, let us write all these inverse trigonometric functions along with their derivatives.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right) = - \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}x} \right) = - \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cot }^{ - 1}}x} \right) = - \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
Hence, the above are the formulae for the derivative of the inverse trigonometric functions.
Note:
We can also find the derivative of inverse trigonometric functions using the inverse function theorem. For example, let \[x = f\left( y \right) = \sin y\]is the inverse of the function \[y = g\left( x \right) = {\sin ^{ - 1}}x\]. Then the derivative of \[y = {\sin ^{ - 1}}x\] is given by \[g'\left( x \right) = \dfrac{1}{{f'\left( y \right)}} = \dfrac{1}{{\left( {\sin y} \right)'}}\], where \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Then, we know, \[\left( {\sin x} \right)' = \cos x\]. So, putting this, we get \[g'\left( x \right) = \dfrac{1}{{\cos y}}\]. Now, using \[{\cos ^2}x = 1 - {\sin ^2}x\], we get \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( {\sin \left( {{{\sin }^{ - 1}}x} \right)} \right)}^2}} }}\]. Now, we know, \[\left( {\sin \left( {{{\sin }^{ - 1}}x} \right) = x} \right)\], so, we get, \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( x \right)}^2}} }}\]. Hence, the derivative of \[{\sin ^{ - 1}}x\] is given by \[\dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Similarly, we can use this method to find the derivative of other trigonometric functions.
Complete step by step answer:
We denote the derivative of the function \[f\left( x \right)\] with respect to \[x\] as \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Let us first list all the inverse trigonometric functions.
We have six inverse trigonometric functions.
The following are the six inverse trigonometric functions:
\[{\sin ^{ - 1}}x,{\cos ^{ - 1}}x,{\tan ^{ - 1}}x,{\csc ^{ - 1}}x,{\sec ^{ - 1}}x,{\cot ^{ - 1}}x\]
Now, let us write all these inverse trigonometric functions along with their derivatives.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right) = - \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}x} \right) = - \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cot }^{ - 1}}x} \right) = - \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
Hence, the above are the formulae for the derivative of the inverse trigonometric functions.
Note:
We can also find the derivative of inverse trigonometric functions using the inverse function theorem. For example, let \[x = f\left( y \right) = \sin y\]is the inverse of the function \[y = g\left( x \right) = {\sin ^{ - 1}}x\]. Then the derivative of \[y = {\sin ^{ - 1}}x\] is given by \[g'\left( x \right) = \dfrac{1}{{f'\left( y \right)}} = \dfrac{1}{{\left( {\sin y} \right)'}}\], where \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Then, we know, \[\left( {\sin x} \right)' = \cos x\]. So, putting this, we get \[g'\left( x \right) = \dfrac{1}{{\cos y}}\]. Now, using \[{\cos ^2}x = 1 - {\sin ^2}x\], we get \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( {\sin \left( {{{\sin }^{ - 1}}x} \right)} \right)}^2}} }}\]. Now, we know, \[\left( {\sin \left( {{{\sin }^{ - 1}}x} \right) = x} \right)\], so, we get, \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( x \right)}^2}} }}\]. Hence, the derivative of \[{\sin ^{ - 1}}x\] is given by \[\dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Similarly, we can use this method to find the derivative of other trigonometric functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

