
What are the derivatives of the inverse trigonometric functions?
Answer
469.2k+ views
Hint: We need to find the derivative of the inverse trigonometric functions. We have direct formulae for the derivative of inverse trigonometric functions. To answer this question, we will list all the inverse trigonometric functions and their corresponding formulae for the derivative.
Complete step by step answer:
We denote the derivative of the function \[f\left( x \right)\] with respect to \[x\] as \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Let us first list all the inverse trigonometric functions.
We have six inverse trigonometric functions.
The following are the six inverse trigonometric functions:
\[{\sin ^{ - 1}}x,{\cos ^{ - 1}}x,{\tan ^{ - 1}}x,{\csc ^{ - 1}}x,{\sec ^{ - 1}}x,{\cot ^{ - 1}}x\]
Now, let us write all these inverse trigonometric functions along with their derivatives.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right) = - \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}x} \right) = - \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cot }^{ - 1}}x} \right) = - \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
Hence, the above are the formulae for the derivative of the inverse trigonometric functions.
Note:
We can also find the derivative of inverse trigonometric functions using the inverse function theorem. For example, let \[x = f\left( y \right) = \sin y\]is the inverse of the function \[y = g\left( x \right) = {\sin ^{ - 1}}x\]. Then the derivative of \[y = {\sin ^{ - 1}}x\] is given by \[g'\left( x \right) = \dfrac{1}{{f'\left( y \right)}} = \dfrac{1}{{\left( {\sin y} \right)'}}\], where \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Then, we know, \[\left( {\sin x} \right)' = \cos x\]. So, putting this, we get \[g'\left( x \right) = \dfrac{1}{{\cos y}}\]. Now, using \[{\cos ^2}x = 1 - {\sin ^2}x\], we get \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( {\sin \left( {{{\sin }^{ - 1}}x} \right)} \right)}^2}} }}\]. Now, we know, \[\left( {\sin \left( {{{\sin }^{ - 1}}x} \right) = x} \right)\], so, we get, \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( x \right)}^2}} }}\]. Hence, the derivative of \[{\sin ^{ - 1}}x\] is given by \[\dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Similarly, we can use this method to find the derivative of other trigonometric functions.
Complete step by step answer:
We denote the derivative of the function \[f\left( x \right)\] with respect to \[x\] as \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Let us first list all the inverse trigonometric functions.
We have six inverse trigonometric functions.
The following are the six inverse trigonometric functions:
\[{\sin ^{ - 1}}x,{\cos ^{ - 1}}x,{\tan ^{ - 1}}x,{\csc ^{ - 1}}x,{\sec ^{ - 1}}x,{\cot ^{ - 1}}x\]
Now, let us write all these inverse trigonometric functions along with their derivatives.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right) = - \dfrac{1}{{\sqrt {1 - {x^2}} }}\], \[ - 1 < x < 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}x} \right) = - \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{|x|\sqrt {{x^2} - 1} }}\], \[x \in \left( { - \infty , - 1} \right) \cup \left( {1,\infty } \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{{\cot }^{ - 1}}x} \right) = - \dfrac{1}{{1 + {x^2}}}\], \[ - \infty < x < \infty \]
Hence, the above are the formulae for the derivative of the inverse trigonometric functions.
Note:
We can also find the derivative of inverse trigonometric functions using the inverse function theorem. For example, let \[x = f\left( y \right) = \sin y\]is the inverse of the function \[y = g\left( x \right) = {\sin ^{ - 1}}x\]. Then the derivative of \[y = {\sin ^{ - 1}}x\] is given by \[g'\left( x \right) = \dfrac{1}{{f'\left( y \right)}} = \dfrac{1}{{\left( {\sin y} \right)'}}\], where \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\].
Then, we know, \[\left( {\sin x} \right)' = \cos x\]. So, putting this, we get \[g'\left( x \right) = \dfrac{1}{{\cos y}}\]. Now, using \[{\cos ^2}x = 1 - {\sin ^2}x\], we get \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( {\sin \left( {{{\sin }^{ - 1}}x} \right)} \right)}^2}} }}\]. Now, we know, \[\left( {\sin \left( {{{\sin }^{ - 1}}x} \right) = x} \right)\], so, we get, \[g'\left( x \right) = \dfrac{1}{{\sqrt {1 - {{\sin }^2}y} }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( {{{\sin }^{ - 1}}x} \right)} }} = \dfrac{1}{{\sqrt {1 - {{\left( x \right)}^2}} }}\]. Hence, the derivative of \[{\sin ^{ - 1}}x\] is given by \[\dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Similarly, we can use this method to find the derivative of other trigonometric functions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

