
What is the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$ ?
Answer
535.5k+ views
Hint: To find the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$, we need to understand what an antiderivative means. Antiderivative means we have to do the integration of the given function. For that we are going to put x as $\tan \theta $ and then we will differentiate on both the sides of the equation. After that we will substitute x as $\tan \theta $ in the integration and also substitute $d\theta $ in place of dx. And hence, will do the integration.
Complete step by step solution:
In the above problem, we are asked to find the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$. To find the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$, we have to integrate this function $\dfrac{1}{1+{{x}^{2}}}$ with respect to x then we get,
$\int{\dfrac{1}{1+{{x}^{2}}}dx}$
Now, we are going to take $x=\tan \theta $ in the above integration and also, we are going to differentiate both the sides of this $x\And \theta $ relation.
$x=\tan \theta $
Differentiating both the sides of the above equation we get,
$dx={{\sec }^{2}}\theta d\theta $
Now, substituting the value of $x\And dx$ in the above integration we get,
\[\int{\dfrac{1}{\left( 1+{{\tan }^{2}}\theta \right)}{{\sec }^{2}}\theta d\theta }\]
We know the trigonometric identity which says that:
$1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Applying the above trigonometric identity in the above integration we get,
\[\int{\dfrac{1}{\left( {{\sec }^{2}}\theta \right)}{{\sec }^{2}}\theta d\theta }\]
As you can see that ${{\sec }^{2}}\theta $ is common in both the numerator and the denominator so it will be cancelled out and we are left with:
$\begin{align}
& \int{d\theta } \\
& =\theta +C \\
\end{align}$
In the above expression, “C” is the constant.
Now, we are going to write $\theta $ in terms of x by using the following relation:
$x=\tan \theta $
Taking ${{\tan }^{-1}}$ on both the sides of the above equation we get,
${{\tan }^{-1}}x={{\tan }^{-1}}\tan \theta $
We know that if we multiply something with the inverse of something then we will get 1 so ${{\tan }^{-1}}\tan =1$ and using this relation in the above equation we get,
${{\tan }^{-1}}x=\theta $
Using the above relation in the above integration we get,
${{\tan }^{-1}}x+C$
Hence, the antiderivative of the above expression is equal to ${{\tan }^{-1}}x+C$.
Note: You can check the result of the antiderivative by taking the derivative of this integration and then see if you are getting this expression $\dfrac{1}{1+{{x}^{2}}}$ or not.
The result of the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$ is equal to ${{\tan }^{-1}}x+C$.
Taking the derivative of ${{\tan }^{-1}}x+C$ with respect to x we get,
$\dfrac{d\left( {{\tan }^{-1}}x+C \right)}{dx}$
We know the differentiation of ${{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}$ and the derivative of constant is 0 so using these derivatives we can find the above derivative as follows:
$\begin{align}
& \dfrac{1}{1+{{x}^{2}}}+0 \\
& =\dfrac{1}{1+{{x}^{2}}} \\
\end{align}$
Hence, we are getting the same expression which we have started with.
Complete step by step solution:
In the above problem, we are asked to find the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$. To find the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$, we have to integrate this function $\dfrac{1}{1+{{x}^{2}}}$ with respect to x then we get,
$\int{\dfrac{1}{1+{{x}^{2}}}dx}$
Now, we are going to take $x=\tan \theta $ in the above integration and also, we are going to differentiate both the sides of this $x\And \theta $ relation.
$x=\tan \theta $
Differentiating both the sides of the above equation we get,
$dx={{\sec }^{2}}\theta d\theta $
Now, substituting the value of $x\And dx$ in the above integration we get,
\[\int{\dfrac{1}{\left( 1+{{\tan }^{2}}\theta \right)}{{\sec }^{2}}\theta d\theta }\]
We know the trigonometric identity which says that:
$1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Applying the above trigonometric identity in the above integration we get,
\[\int{\dfrac{1}{\left( {{\sec }^{2}}\theta \right)}{{\sec }^{2}}\theta d\theta }\]
As you can see that ${{\sec }^{2}}\theta $ is common in both the numerator and the denominator so it will be cancelled out and we are left with:
$\begin{align}
& \int{d\theta } \\
& =\theta +C \\
\end{align}$
In the above expression, “C” is the constant.
Now, we are going to write $\theta $ in terms of x by using the following relation:
$x=\tan \theta $
Taking ${{\tan }^{-1}}$ on both the sides of the above equation we get,
${{\tan }^{-1}}x={{\tan }^{-1}}\tan \theta $
We know that if we multiply something with the inverse of something then we will get 1 so ${{\tan }^{-1}}\tan =1$ and using this relation in the above equation we get,
${{\tan }^{-1}}x=\theta $
Using the above relation in the above integration we get,
${{\tan }^{-1}}x+C$
Hence, the antiderivative of the above expression is equal to ${{\tan }^{-1}}x+C$.
Note: You can check the result of the antiderivative by taking the derivative of this integration and then see if you are getting this expression $\dfrac{1}{1+{{x}^{2}}}$ or not.
The result of the antiderivative of $\dfrac{1}{1+{{x}^{2}}}$ is equal to ${{\tan }^{-1}}x+C$.
Taking the derivative of ${{\tan }^{-1}}x+C$ with respect to x we get,
$\dfrac{d\left( {{\tan }^{-1}}x+C \right)}{dx}$
We know the differentiation of ${{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}$ and the derivative of constant is 0 so using these derivatives we can find the above derivative as follows:
$\begin{align}
& \dfrac{1}{1+{{x}^{2}}}+0 \\
& =\dfrac{1}{1+{{x}^{2}}} \\
\end{align}$
Hence, we are getting the same expression which we have started with.
Recently Updated Pages
What is the null point class 12 physics CBSE

A light bulb is rated 100 Watts for 220 Volts AC supply class 12 physics CBSE

Of the following which is the product formed when cyclohexanone class 12 chemistry CBSE

Explain the steps in the formation of an ovum from class 12 biology CBSE

A black and a red dice are rolled a Find the conditional class 12 maths CBSE

Describe the biprism experiment to find the wavelength class 12 physics CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

