
An unstable heavy nucleus at rest breaks into two nuclei which move away with velocities in the ratio of 8: 27. The ratio of the radii of the nuclei (assumed to be spherical) is:
A. \[8:27\]
B. \[2:3\]
C. \[3:2\]
D. \[4:9\]
Answer
563.7k+ views
Hint: From the ratio of the velocities, we will be able to determine the ratio of their atomic masses by using the momentum conservation theorem. Next, using the formula for the radius of a nuclei, we will be able to find the ratio of their radii.
Formula Used: Momentum conservation theorem: ${m_1}{v_1} = {m_2}{v_2}$
Where ${m_1},{m_2}$ are the masses of the fission nuclei and is expressed in kilograms $(kg)$ and ${v_1},{v_2}$ are their velocities and is expressed in meter per second $(m/s)$.
Radius of a nuclei: $r = {r_0}{A^{1/3}}$
Where $r$ is the radius of the nuclei and is expressed in meters $(m)$. It is represented as ${r_1},{r_2}$ for the two nuclei.${r_0}$ is a constant and is equal to $1.2fm$. $A$ is the atomic masses of the fission nuclei and is expressed in kilograms $(kg)$. It is represented as ${A_1},{A_2}$ for the two nuclei.
Complete step by step answer:When an unstable nuclei fissions, it breaks into two nuclei which move away at a particular velocity like shown below:
This system has conservation of momentum at all points. Therefore we can say that ${m_1}{v_1} = {m_2}{v_2}$.
Upon rearrangement we get,
$
{m_1}{v_1} = {m_2}{v_2} \\
\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{v_2}}}{{{v_1}}} \\
$
Substituting the values we get,
$
\dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{v_2}}}{{{v_1}}} = \dfrac{{27}}{8} \\
\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{27}}{8} \\
$
For nuclei, mass will be represented using $A$ instead of $m$. Making this substitution we get,
$
\dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{27}}{8} = \dfrac{{{A_1}}}{{{A_2}}} \\
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{27}}{8} \\
$
Now, we know that $r = {r_0}{A^{1/3}}$.
Taking this formula for each nuclei we get,
${r_1} = {r_0}{A_1}^{1/3}$ and ${r_2} = {r_0}{A_2}^{1/3}$.
Dividing these two we get,
$\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{A_1}^{1/3}}}{{{A_2}^{1/3}}}$
Substituting the values of ${A_1},{A_2}$ in this to get a ratio of their radii $r$,
$
\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{A_1}^{1/3}}}{{{A_2}^{1/3}}} = \dfrac{{{{27}^{1/3}}}}{{{8^{1/3}}}} \\
\Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = \dfrac{3}{2} \\
$
Therefore, the ratio of their radii is $3:2$.
In conclusion, the correct option is C.
Note:It is interesting to see the law of conservation of momentum of classical physics being applied in quantum physics. This was assumed as a case of general two bodies in motion and therefore the law helped us solve it easily.
Formula Used: Momentum conservation theorem: ${m_1}{v_1} = {m_2}{v_2}$
Where ${m_1},{m_2}$ are the masses of the fission nuclei and is expressed in kilograms $(kg)$ and ${v_1},{v_2}$ are their velocities and is expressed in meter per second $(m/s)$.
Radius of a nuclei: $r = {r_0}{A^{1/3}}$
Where $r$ is the radius of the nuclei and is expressed in meters $(m)$. It is represented as ${r_1},{r_2}$ for the two nuclei.${r_0}$ is a constant and is equal to $1.2fm$. $A$ is the atomic masses of the fission nuclei and is expressed in kilograms $(kg)$. It is represented as ${A_1},{A_2}$ for the two nuclei.
Complete step by step answer:When an unstable nuclei fissions, it breaks into two nuclei which move away at a particular velocity like shown below:
This system has conservation of momentum at all points. Therefore we can say that ${m_1}{v_1} = {m_2}{v_2}$.
Upon rearrangement we get,
$
{m_1}{v_1} = {m_2}{v_2} \\
\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{v_2}}}{{{v_1}}} \\
$
Substituting the values we get,
$
\dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{{v_2}}}{{{v_1}}} = \dfrac{{27}}{8} \\
\Rightarrow \dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{27}}{8} \\
$
For nuclei, mass will be represented using $A$ instead of $m$. Making this substitution we get,
$
\dfrac{{{m_1}}}{{{m_2}}} = \dfrac{{27}}{8} = \dfrac{{{A_1}}}{{{A_2}}} \\
\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{27}}{8} \\
$
Now, we know that $r = {r_0}{A^{1/3}}$.
Taking this formula for each nuclei we get,
${r_1} = {r_0}{A_1}^{1/3}$ and ${r_2} = {r_0}{A_2}^{1/3}$.
Dividing these two we get,
$\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{A_1}^{1/3}}}{{{A_2}^{1/3}}}$
Substituting the values of ${A_1},{A_2}$ in this to get a ratio of their radii $r$,
$
\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{{A_1}^{1/3}}}{{{A_2}^{1/3}}} = \dfrac{{{{27}^{1/3}}}}{{{8^{1/3}}}} \\
\Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = \dfrac{3}{2} \\
$
Therefore, the ratio of their radii is $3:2$.
In conclusion, the correct option is C.
Note:It is interesting to see the law of conservation of momentum of classical physics being applied in quantum physics. This was assumed as a case of general two bodies in motion and therefore the law helped us solve it easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

