
An organic compound with molecular formula ${{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O}}$ did not give a silver mirror with Tollen’s reagent, but gave an oxime and hydroxylamine, it may be:
A.${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}$
B. ${{\text{C}}_2}{{\text{H}}_5}{\text{CHO}}$
C.${\text{C}}{{\text{H}}_2} = {\text{CH}} - {\text{C}}{{\text{H}}_{\text{2}}} - {\text{OH}}$
D. ${\text{C}}{{\text{H}}_3} - {\text{O}} - {\text{CH}} = {\text{C}}{{\text{H}}_2}$
Answer
545.1k+ views
Hint: The chemical compound having a ketone functional group gives the oxime and hydroxylamine with Tollen’s reagent whereas the chemical compound having an aldehyde functional group gives the silver mirror.
Complete step-by-step answer:Tollen’s reagent is used to determine the presence of the carbonyl group in chemical compounds.
The carbonyl group contains aldehyde and ketone. The aldehyde gives a silver mirror with Tollen’s reagent and ketone forms the oxime and hydroxylamine with Tollen’s reagent.
The formation of silver mirror is shown as follows:
${\text{RCHO}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }\, + \,{{\text{H}}_2}{\text{O}}}\limits_{{\text{Tollen reagent}}} \,\, \to \mathop {{\text{2Ag}}}\limits_{{\text{silver mirror}}} \,{\text{ + }}\,\,{\text{4N}}{{\text{H}}_{\text{3}}}\, + \,{\text{RCOOH}}\, + \,2\,{{\text{H}}^ + }$
The formation of oxime is shown as follows:
${\text{ROR}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }}\limits_{{\text{Tollen reagent}}} \, \to \mathop {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C = N(OH)C}}{{\text{H}}_{\text{3}}}\,}\limits_{{\text{oxime}}} $
So, the organic compound having a molecular formula ${{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O}}$is a ketone.
The organic compound ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}$is a ketone so, option (A) is correct.
The formation of oxime is shown as follows:
${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }}\limits_{{\text{Tollen reagent}}} \, \to \mathop {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C = N(OH)C}}{{\text{H}}_{\text{3}}}\,}\limits_{{\text{oxime}}} $
The organic compound ${{\text{C}}_2}{{\text{H}}_5}{\text{CHO}}$ is an aldehyde. Aldehyde gives silver mirror with Tollen’s reagent but the organic compound having molecular formula ${{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O}}$is not giving silver mirror so, option (B) is incorrect.
The organic compound${\text{C}}{{\text{H}}_2} = {\text{CH}} - {\text{C}}{{\text{H}}_{\text{2}}} - {\text{OH}}$is an alcohol. Alcohol does not give a positive test with Tollen’s reagent, so option (C) is incorrect.
The organic compound${\text{C}}{{\text{H}}_3} - {\text{O}} - {\text{CH}} = {\text{C}}{{\text{H}}_2}$is an ether. Ether does not give a positive test with Tollen’s reagent, so option (D) is incorrect.
Therefore, option (A) ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}$is correct.
Note:Tollen’s reagent is a solution of silver nitrate, sodium hydroxide, and ammonia which forms silver oxide and sodium nitrate. When aldehyde reacts with Tollen’s reagent, the elemental silver precipitates which get deposited on the wall of the test tube. The precipitate is known as a silver mirror. Tollen’s reagent gives a positive test for alpha-hydroxy ketones.
Complete step-by-step answer:Tollen’s reagent is used to determine the presence of the carbonyl group in chemical compounds.
The carbonyl group contains aldehyde and ketone. The aldehyde gives a silver mirror with Tollen’s reagent and ketone forms the oxime and hydroxylamine with Tollen’s reagent.
The formation of silver mirror is shown as follows:
${\text{RCHO}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }\, + \,{{\text{H}}_2}{\text{O}}}\limits_{{\text{Tollen reagent}}} \,\, \to \mathop {{\text{2Ag}}}\limits_{{\text{silver mirror}}} \,{\text{ + }}\,\,{\text{4N}}{{\text{H}}_{\text{3}}}\, + \,{\text{RCOOH}}\, + \,2\,{{\text{H}}^ + }$
The formation of oxime is shown as follows:
${\text{ROR}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }}\limits_{{\text{Tollen reagent}}} \, \to \mathop {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C = N(OH)C}}{{\text{H}}_{\text{3}}}\,}\limits_{{\text{oxime}}} $
So, the organic compound having a molecular formula ${{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O}}$is a ketone.
The organic compound ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}$is a ketone so, option (A) is correct.
The formation of oxime is shown as follows:
${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\, + \,\mathop {{{\left[ {{\text{Ag(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}} \right]}^ + }}\limits_{{\text{Tollen reagent}}} \, \to \mathop {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C = N(OH)C}}{{\text{H}}_{\text{3}}}\,}\limits_{{\text{oxime}}} $
The organic compound ${{\text{C}}_2}{{\text{H}}_5}{\text{CHO}}$ is an aldehyde. Aldehyde gives silver mirror with Tollen’s reagent but the organic compound having molecular formula ${{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O}}$is not giving silver mirror so, option (B) is incorrect.
The organic compound${\text{C}}{{\text{H}}_2} = {\text{CH}} - {\text{C}}{{\text{H}}_{\text{2}}} - {\text{OH}}$is an alcohol. Alcohol does not give a positive test with Tollen’s reagent, so option (C) is incorrect.
The organic compound${\text{C}}{{\text{H}}_3} - {\text{O}} - {\text{CH}} = {\text{C}}{{\text{H}}_2}$is an ether. Ether does not give a positive test with Tollen’s reagent, so option (D) is incorrect.
Therefore, option (A) ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}$is correct.
Note:Tollen’s reagent is a solution of silver nitrate, sodium hydroxide, and ammonia which forms silver oxide and sodium nitrate. When aldehyde reacts with Tollen’s reagent, the elemental silver precipitates which get deposited on the wall of the test tube. The precipitate is known as a silver mirror. Tollen’s reagent gives a positive test for alpha-hydroxy ketones.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

Sketch the electric field lines in case of an electric class 12 physics CBSE

