Answer
Verified
444.3k+ views
Hint: Velocity with which the object travels is 17 m/sec and the height of the building is 12m. After a time t seconds, we have the equation of height as $ S = 12 + 17t - 5{t^2} $ in terms of velocity (17), height (12) and acceleration (5). As the height is relative to the ground, when an object touches the ground the height will be 0 m. So the value of S in the equation $ S = 12 + 17t - 5{t^2} $ will be zero when the object touches the ground. Find the value of t using the below formula of quadratic equation.
Formula used:
When a quadratic equation is in the form of $ a{x^2} + bx + c = 0 $ where a is not equal to zero, the value of x will be $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ where a, b and c are the coefficients. This formula is called a quadratic formula.
Complete step-by-step answer:
We are given that an object is thrown upwards with an initial velocity of 17 m/sec from a building with 12 m height and it is at a height of $ S = 12 + 17t - 5{t^2} $ from the ground after a flight of 't' seconds.
When the object touches the ground, the height S will be zero.
Therefore, $ S = 0 $
But we already have that $ S = 12 + 17t - 5{t^2} $
This gives us $ 0 = 12 + 17t - 5{t^2} $
$ \Rightarrow 12 + 17t - 5{t^2} = 0 $
As we can see the above equation is a quadratic equation and when we compare the above equation with $ a{x^2} + bx + c = 0 $ , we get $ a = - 5,b = 17,c = 12 $
The value of $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ , which means the value of $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Substitute the values of a, b and c to find the value of t
$ \Rightarrow t = \dfrac{{ - \left( {17} \right) \pm \sqrt {{{17}^2} - 4\left( { - 5} \right)\left( {12} \right)} }}{{2\left( { - 5} \right)}} $
$ \Rightarrow t = \dfrac{{ - 17 \pm \sqrt {289 + 240} }}{{ - 10}} = \dfrac{{17 \pm \sqrt {529} }}{{10}} = \dfrac{{17 \pm 23}}{{10}} $
$ \Rightarrow t = \dfrac{{17 + 23}}{{10}},t = \dfrac{{17 - 23}}{{10}} $
$ \Rightarrow t = \dfrac{{40}}{{10}},t = \dfrac{{ - 6}}{{10}} $
$ \Rightarrow t = 4sec,t = - 0.6sec $
We have got 2 values for t, but one is positive and one is negative.
Time cannot be negative.
Therefore the time taken by the object to touch the ground is 4 seconds.
So, the correct answer is “4 seconds”.
Note: Quadratic equations can also be factored instead of using the above formula to find the values of x. When the equations cannot be factored we can use quadratic formulas. Using quadratic formulas, we may get real values and imaginary values. The no. of solutions of an equation depends upon the highest degree of the variable. If the highest degree is 2, it will have 2 solutions; if the highest degree is 3 it will have 3 solutions and so on.
Formula used:
When a quadratic equation is in the form of $ a{x^2} + bx + c = 0 $ where a is not equal to zero, the value of x will be $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ where a, b and c are the coefficients. This formula is called a quadratic formula.
Complete step-by-step answer:
We are given that an object is thrown upwards with an initial velocity of 17 m/sec from a building with 12 m height and it is at a height of $ S = 12 + 17t - 5{t^2} $ from the ground after a flight of 't' seconds.
When the object touches the ground, the height S will be zero.
Therefore, $ S = 0 $
But we already have that $ S = 12 + 17t - 5{t^2} $
This gives us $ 0 = 12 + 17t - 5{t^2} $
$ \Rightarrow 12 + 17t - 5{t^2} = 0 $
As we can see the above equation is a quadratic equation and when we compare the above equation with $ a{x^2} + bx + c = 0 $ , we get $ a = - 5,b = 17,c = 12 $
The value of $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ , which means the value of $ t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Substitute the values of a, b and c to find the value of t
$ \Rightarrow t = \dfrac{{ - \left( {17} \right) \pm \sqrt {{{17}^2} - 4\left( { - 5} \right)\left( {12} \right)} }}{{2\left( { - 5} \right)}} $
$ \Rightarrow t = \dfrac{{ - 17 \pm \sqrt {289 + 240} }}{{ - 10}} = \dfrac{{17 \pm \sqrt {529} }}{{10}} = \dfrac{{17 \pm 23}}{{10}} $
$ \Rightarrow t = \dfrac{{17 + 23}}{{10}},t = \dfrac{{17 - 23}}{{10}} $
$ \Rightarrow t = \dfrac{{40}}{{10}},t = \dfrac{{ - 6}}{{10}} $
$ \Rightarrow t = 4sec,t = - 0.6sec $
We have got 2 values for t, but one is positive and one is negative.
Time cannot be negative.
Therefore the time taken by the object to touch the ground is 4 seconds.
So, the correct answer is “4 seconds”.
Note: Quadratic equations can also be factored instead of using the above formula to find the values of x. When the equations cannot be factored we can use quadratic formulas. Using quadratic formulas, we may get real values and imaginary values. The no. of solutions of an equation depends upon the highest degree of the variable. If the highest degree is 2, it will have 2 solutions; if the highest degree is 3 it will have 3 solutions and so on.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE