
An LED (Light Emitting Diode) is constructed from a p-n based junction on a certain $Ga - As - p$ semi conducting material whose energy gap is $1.9eV$. What is the wavelength of the emitted light?
Answer
571.8k+ views
Hint: In a LED, an electron jumps from high potential to low potential due to applied voltage. When electrons jump from high potential to low potential, light is emitted in the form of photons and the energy of each photon is equal to the energy gap. Also, energy of photon is given by $E = hv$, where $h$ is Planck's constant and $v$ is frequency of light wave.
Complete step-by-step solution:
From an LED, light is emitted in the form of light-waves (photons). Energy of each photon is equal to the energy gap of the LED.
Given, energy gap $E = 1.9eV$.
Let $\lambda $ be the wavelength of light.
Energy of photons is given by $E = hv$, where $h$ is Planck's constant and $v$ is frequency of light wave.
Also, $E = \dfrac{{hc}}{\lambda }$, where $c$ is the speed of light.
Then, $\lambda = \dfrac{{hc}}{E}$
We know that $hc = 1240eV$ and given $E = 1.9ev$, and we get wavelength in a nanometer.
After putting values in above equation, we get
$\lambda = \dfrac{{1240}}{{1.9}} \simeq 650nm$.
Then the wavelength of emitted light is $650nm$.
Hence, the correct answer is option A.
Note:- An LED produces light when a voltage is applied through the ends of the led. Colour of emitted light is dependent on the energy gap of led. As we know, different colours have different frequency and frequency depends upon energy gap then we can change colour of led by changing energy gap of led. Working of solar panel is reverse of working of led, when light waves fall on solar panel above a threshold frequency it generates voltage and current
Complete step-by-step solution:
From an LED, light is emitted in the form of light-waves (photons). Energy of each photon is equal to the energy gap of the LED.
Given, energy gap $E = 1.9eV$.
Let $\lambda $ be the wavelength of light.
Energy of photons is given by $E = hv$, where $h$ is Planck's constant and $v$ is frequency of light wave.
Also, $E = \dfrac{{hc}}{\lambda }$, where $c$ is the speed of light.
Then, $\lambda = \dfrac{{hc}}{E}$
We know that $hc = 1240eV$ and given $E = 1.9ev$, and we get wavelength in a nanometer.
After putting values in above equation, we get
$\lambda = \dfrac{{1240}}{{1.9}} \simeq 650nm$.
Then the wavelength of emitted light is $650nm$.
Hence, the correct answer is option A.
Note:- An LED produces light when a voltage is applied through the ends of the led. Colour of emitted light is dependent on the energy gap of led. As we know, different colours have different frequency and frequency depends upon energy gap then we can change colour of led by changing energy gap of led. Working of solar panel is reverse of working of led, when light waves fall on solar panel above a threshold frequency it generates voltage and current
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

