
An image of an object approaching a convex mirror of radius of curvature 20 m along its optical axis is observed to move from 25/3 m to 50/7 in 30 seconds. What is the speed of the object in km per hour?
Answer
550.2k+ views
Hint: We need to find the corresponding object distances of the two image distances. Then we need to find the speed by using the difference in object distances divided by the time.
Formula used: In this solution we will be using the following formulae;
\[f = \dfrac{R}{2}\] where \[f\] is the focal length and \[R\] is the radius of curvature,\[\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}\] where \[f\] is the focal length of a mirror, \[u\] is the object position from the mirror, and \[v\] is the image position from the mirror.
\[s = \dfrac{d}{t}\] where \[s\] is the speed of an object, \[d\] is the change in position and \[t\] is the time taken for the object to change position.
Complete step-by-step answer:
To calculate the speed, we need to calculate the object positions. We can use the mirror equation, as in
\[\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}\] where \[f\] is the focal length of a mirror, \[u\] is the object position from the mirror, and \[v\] is the image position from the mirror
And \[f = \dfrac{R}{2}\] where\[R\] is the radius of curvature.
Hence, \[f = \dfrac{{20}}{2} = 10m\]
By inserting all known values into the mirror equation, for the initial position, we have
\[ - \dfrac{1}{{10}} = - \dfrac{1}{{\dfrac{{25}}{3}}} + \dfrac{1}{u}\] (since the focal length and image position of a convex mirror by convention are regarded as negative).
Then
\[\dfrac{1}{u} = - \dfrac{1}{{10}} + \dfrac{3}{{25}} = \dfrac{{ - 5 + 6}}{{50}} = \dfrac{1}{{50}}\]
\[ \Rightarrow u = 50m\]
Similarly for the final position, we have
\[\dfrac{1}{{{u_2}}} = - \dfrac{1}{{10}} + \dfrac{7}{{50}} = \dfrac{2}{{50}}\]
\[ \Rightarrow {u_2} = 25m\]
Hence, the distance travelled is
\[d = {u_2} - u = 25 - 50 = - 25m\]
Hence, speed is
\[s = \dfrac{d}{t} = \dfrac{{25}}{{30}} = 0.833m/s\] or \[3km/h\]
Note: For clarity, we neglect the negative sign in the distance because speed is not a vector and hence the direction of the object should not be considered. The negative sign only signifies that the object reduces its distance to the mirror in time.
Formula used: In this solution we will be using the following formulae;
\[f = \dfrac{R}{2}\] where \[f\] is the focal length and \[R\] is the radius of curvature,\[\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}\] where \[f\] is the focal length of a mirror, \[u\] is the object position from the mirror, and \[v\] is the image position from the mirror.
\[s = \dfrac{d}{t}\] where \[s\] is the speed of an object, \[d\] is the change in position and \[t\] is the time taken for the object to change position.
Complete step-by-step answer:
To calculate the speed, we need to calculate the object positions. We can use the mirror equation, as in
\[\dfrac{1}{f} = \dfrac{1}{u} + \dfrac{1}{v}\] where \[f\] is the focal length of a mirror, \[u\] is the object position from the mirror, and \[v\] is the image position from the mirror
And \[f = \dfrac{R}{2}\] where\[R\] is the radius of curvature.
Hence, \[f = \dfrac{{20}}{2} = 10m\]
By inserting all known values into the mirror equation, for the initial position, we have
\[ - \dfrac{1}{{10}} = - \dfrac{1}{{\dfrac{{25}}{3}}} + \dfrac{1}{u}\] (since the focal length and image position of a convex mirror by convention are regarded as negative).
Then
\[\dfrac{1}{u} = - \dfrac{1}{{10}} + \dfrac{3}{{25}} = \dfrac{{ - 5 + 6}}{{50}} = \dfrac{1}{{50}}\]
\[ \Rightarrow u = 50m\]
Similarly for the final position, we have
\[\dfrac{1}{{{u_2}}} = - \dfrac{1}{{10}} + \dfrac{7}{{50}} = \dfrac{2}{{50}}\]
\[ \Rightarrow {u_2} = 25m\]
Hence, the distance travelled is
\[d = {u_2} - u = 25 - 50 = - 25m\]
Hence, speed is
\[s = \dfrac{d}{t} = \dfrac{{25}}{{30}} = 0.833m/s\] or \[3km/h\]
Note: For clarity, we neglect the negative sign in the distance because speed is not a vector and hence the direction of the object should not be considered. The negative sign only signifies that the object reduces its distance to the mirror in time.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

