
An electron in an atom jumps in such a way that its kinetic energy changes from $x$ to $\dfrac{x}{9}$. The change in potential energy will be ?
Answer
475.8k+ views
Hint:The energy of an electron decreases when it jumps from a higher orbit to a lower orbit in a given atom. Conversely, the energy of an electron increases when it jumps from lower orbit to higher orbit in a given atom.
The change in energy of an electron when it jumps from one orbit to another orbit in a given atom is equal to the difference between its final energy and its initial energy.
Formula used:
The kinetic energy of an electron in an orbit of a given atom is,
$K.E = \dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}r}}$
And the potential energy of that electron is,
$P.E = \dfrac{{ - Z{e^2}}}{{4\pi {\varepsilon _0}r}}$
Where $Z = $ total number of protons in the nucleus of the given atom, $e = $ charge of electron, ${\varepsilon _0} = $permittivity of free space and $r = $ distance of electron from the nucleus.
Complete step by step answer:
It is given that the initial kinetic energy ${\left( {K.E} \right)_i}$ of the electron is $x$.
\[{\left( {K.E} \right)_i} = \,\dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}{r_i}}}\]
$\Rightarrow {\left( {K.E} \right)_i} = x$
Where, ${r_i}$ is the radius of the initial orbit of an electron.
And the final kinetic energy ${\left( {K.E} \right)_f}$ of the electron is $\dfrac{x}{9}$.
${\left( {K.E} \right)_f} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}}$
$\Rightarrow {\left( {K.E} \right)_f} = \dfrac{x}{9}$
Where, ${r_f}$ is the radius of the final orbit of an electron.
The change in kinetic energy \[\Delta K.E\] of the electron is given by
${\left( {K.E} \right)_f} - {\left( {K.E} \right)_i} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}} - \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_i}}}$
Substitute the values of ${\left( {K.E} \right)_f}$ and ${\left( {K.E} \right)_i}$ in the above equation.
$ \Rightarrow \dfrac{x}{9} - x = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Further simplifying
$ \Rightarrow - \dfrac{{8x}}{9} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Or $\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}$
Let the initial potential energy of the electron is ${\left( {P.E} \right)_i} = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}$.
And the final potential energy of the electron is ${\left( {P.E} \right)_f} = - \dfrac{{Z{e^2}}}{{4\pi {\varepsilon _0}{r_f}}}$.
The change in potential energy of the electron $\Delta \left( {P.E} \right)$ is
$\Delta \left( {P.E} \right) = {\left( {P.E} \right)_f} - {\left( {P.E} \right)_i}$
Substituting the value of ${\left( {P.E} \right)_f}$ and ${\left( {P.E} \right)_i}$ in the above formula.
$\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_f}}} - \left( { - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}} \right)$
Further simplifying
$\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Now multiply $2$ on the numerator and denominator of the left side of the above equation.
$\Delta \left( {P.E} \right) = - 2\left( {\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)} \right)$
But we obtained that $\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}$
$\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)$
Further simplifying
$\therefore \Delta \left( {P.E} \right) = \dfrac{{16x}}{9}$
Hence, the change in potential energy of the electron is $\dfrac{{16x}}{9}$.
Note:Alternative method: The total energy of an electron is equal to the sum of kinetic energy and potential energy.
$E = K.E + P.E$
Also, the total energy of an electron is equal to the negative of kinetic energy.
$E = - \left( {K.E} \right)$
So, $K.E + P.E = - \left( {K.E} \right)$
$P.E = - 2\left( {K.E} \right)$
$\Rightarrow \Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)$
It is given that the initial kinetic energy ${\left( {K.E} \right)_i} = x$.
The final kinetic energy ${\left( {K.E} \right)_f} = \dfrac{x}{9}$.
The change in kinetic energy $\Delta \left( {K.E} \right) = {\left( {K.E} \right)_f} - {\left( {K.E} \right)_i}$
Substituting the required values in the above formula.
$\Delta \left( {K.E} \right) = x - \dfrac{x}{9}$
$\Rightarrow \Delta \left( {K.E} \right) = - \dfrac{{8x}}{9}$
But we know that $\Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)$
Substitute the value of $\Delta \left( {K.E} \right)$ in the above formula.
$\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)$
On further simplification
$\Delta \left( {P.E} \right) = \dfrac{{16x}}{9}$
Hence, the change in potential energy of the electron is $\dfrac{{16x}}{9}$.
The change in energy of an electron when it jumps from one orbit to another orbit in a given atom is equal to the difference between its final energy and its initial energy.
Formula used:
The kinetic energy of an electron in an orbit of a given atom is,
$K.E = \dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}r}}$
And the potential energy of that electron is,
$P.E = \dfrac{{ - Z{e^2}}}{{4\pi {\varepsilon _0}r}}$
Where $Z = $ total number of protons in the nucleus of the given atom, $e = $ charge of electron, ${\varepsilon _0} = $permittivity of free space and $r = $ distance of electron from the nucleus.
Complete step by step answer:
It is given that the initial kinetic energy ${\left( {K.E} \right)_i}$ of the electron is $x$.
\[{\left( {K.E} \right)_i} = \,\dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}{r_i}}}\]
$\Rightarrow {\left( {K.E} \right)_i} = x$
Where, ${r_i}$ is the radius of the initial orbit of an electron.
And the final kinetic energy ${\left( {K.E} \right)_f}$ of the electron is $\dfrac{x}{9}$.
${\left( {K.E} \right)_f} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}}$
$\Rightarrow {\left( {K.E} \right)_f} = \dfrac{x}{9}$
Where, ${r_f}$ is the radius of the final orbit of an electron.
The change in kinetic energy \[\Delta K.E\] of the electron is given by
${\left( {K.E} \right)_f} - {\left( {K.E} \right)_i} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}} - \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_i}}}$
Substitute the values of ${\left( {K.E} \right)_f}$ and ${\left( {K.E} \right)_i}$ in the above equation.
$ \Rightarrow \dfrac{x}{9} - x = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Further simplifying
$ \Rightarrow - \dfrac{{8x}}{9} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Or $\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}$
Let the initial potential energy of the electron is ${\left( {P.E} \right)_i} = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}$.
And the final potential energy of the electron is ${\left( {P.E} \right)_f} = - \dfrac{{Z{e^2}}}{{4\pi {\varepsilon _0}{r_f}}}$.
The change in potential energy of the electron $\Delta \left( {P.E} \right)$ is
$\Delta \left( {P.E} \right) = {\left( {P.E} \right)_f} - {\left( {P.E} \right)_i}$
Substituting the value of ${\left( {P.E} \right)_f}$ and ${\left( {P.E} \right)_i}$ in the above formula.
$\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_f}}} - \left( { - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}} \right)$
Further simplifying
$\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)$
Now multiply $2$ on the numerator and denominator of the left side of the above equation.
$\Delta \left( {P.E} \right) = - 2\left( {\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)} \right)$
But we obtained that $\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}$
$\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)$
Further simplifying
$\therefore \Delta \left( {P.E} \right) = \dfrac{{16x}}{9}$
Hence, the change in potential energy of the electron is $\dfrac{{16x}}{9}$.
Note:Alternative method: The total energy of an electron is equal to the sum of kinetic energy and potential energy.
$E = K.E + P.E$
Also, the total energy of an electron is equal to the negative of kinetic energy.
$E = - \left( {K.E} \right)$
So, $K.E + P.E = - \left( {K.E} \right)$
$P.E = - 2\left( {K.E} \right)$
$\Rightarrow \Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)$
It is given that the initial kinetic energy ${\left( {K.E} \right)_i} = x$.
The final kinetic energy ${\left( {K.E} \right)_f} = \dfrac{x}{9}$.
The change in kinetic energy $\Delta \left( {K.E} \right) = {\left( {K.E} \right)_f} - {\left( {K.E} \right)_i}$
Substituting the required values in the above formula.
$\Delta \left( {K.E} \right) = x - \dfrac{x}{9}$
$\Rightarrow \Delta \left( {K.E} \right) = - \dfrac{{8x}}{9}$
But we know that $\Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)$
Substitute the value of $\Delta \left( {K.E} \right)$ in the above formula.
$\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)$
On further simplification
$\Delta \left( {P.E} \right) = \dfrac{{16x}}{9}$
Hence, the change in potential energy of the electron is $\dfrac{{16x}}{9}$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

