Answer
Verified
436.8k+ views
Hint: Find the relation between electric field and magnetic field. They are related to each other by c i.e. speed of light, Write the equation for c in terms of wavelength. Then, get the expression for c in terms of angular frequency and wave number. Finally, substitute that value in the relation of electric field and magnetic field.
Complete answer:
Given: Equations of electromagnetic waves: $E= { E }_{ 0 } \sin { \left( kx-\omega t \right) }$ and $B={ B }_{ 0 }\sin { \left( kx-\omega t \right) }$
The relation between Electric field ${ E }_{ 0 }$ and Magnetic field ${ B }_{ 0 }$ is given by,
${ E }_{ 0 }=c{ B }_{ 0 }$ …(1)
We know, $\nu =\dfrac { c }{ \lambda }$
Rearranging the above equation we get,
$c=\nu \lambda$ …(2)
We also know, $\nu =\dfrac { \omega}{ 2\pi }$
Thus, substituting this value in the equation. (2) we get,
$c=\dfrac { \omega}{ 2\pi }\lambda$
Now, substituting $\cfrac { 2\pi }{ \lambda } =k$ we get,
$c=\dfrac { \omega }{ k }$ …(2)
Then, substituting the equation. (3) in equation. (1) we get,
${ E }_{ 0 }=\dfrac { \omega }{ k } { B }_{ 0 }$
Rearranging the above equation we get,
${ E }_{ 0 }k={ B }_{ 0 }\omega$
So, the correct answer is “Option A”.
Note:
The direction of electromagnetic waves is found by vector cross product of the electric field and magnetic field. Electromagnetic radiations also show dual nature i.e. have the properties of a wave as well as the properties of a particle.
Complete answer:
Given: Equations of electromagnetic waves: $E= { E }_{ 0 } \sin { \left( kx-\omega t \right) }$ and $B={ B }_{ 0 }\sin { \left( kx-\omega t \right) }$
The relation between Electric field ${ E }_{ 0 }$ and Magnetic field ${ B }_{ 0 }$ is given by,
${ E }_{ 0 }=c{ B }_{ 0 }$ …(1)
We know, $\nu =\dfrac { c }{ \lambda }$
Rearranging the above equation we get,
$c=\nu \lambda$ …(2)
We also know, $\nu =\dfrac { \omega}{ 2\pi }$
Thus, substituting this value in the equation. (2) we get,
$c=\dfrac { \omega}{ 2\pi }\lambda$
Now, substituting $\cfrac { 2\pi }{ \lambda } =k$ we get,
$c=\dfrac { \omega }{ k }$ …(2)
Then, substituting the equation. (3) in equation. (1) we get,
${ E }_{ 0 }=\dfrac { \omega }{ k } { B }_{ 0 }$
Rearranging the above equation we get,
${ E }_{ 0 }k={ B }_{ 0 }\omega$
So, the correct answer is “Option A”.
Note:
The direction of electromagnetic waves is found by vector cross product of the electric field and magnetic field. Electromagnetic radiations also show dual nature i.e. have the properties of a wave as well as the properties of a particle.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers