
An electromagnetic wave passing through vacuum is described by the equations $E= { E }_{ 0 } \sin { \left( kx-\omega t \right) }$ and $B={ B }_{ 0 }\sin { \left( kx-\omega t \right) }$. Then,
A. ${ E }_{ 0 }k={ B }_{ 0 }\omega$
B. ${ E }_{ 0 }\omega={ B }_{ 0 }k$
C. ${ E }_{ 0 }{ B }_{ 0 }=\omega k$
D. ${ E }_{ 0 }={ B }_{ 0 }$
Answer
517.8k+ views
Hint: Find the relation between electric field and magnetic field. They are related to each other by c i.e. speed of light, Write the equation for c in terms of wavelength. Then, get the expression for c in terms of angular frequency and wave number. Finally, substitute that value in the relation of electric field and magnetic field.
Complete answer:
Given: Equations of electromagnetic waves: $E= { E }_{ 0 } \sin { \left( kx-\omega t \right) }$ and $B={ B }_{ 0 }\sin { \left( kx-\omega t \right) }$
The relation between Electric field ${ E }_{ 0 }$ and Magnetic field ${ B }_{ 0 }$ is given by,
${ E }_{ 0 }=c{ B }_{ 0 }$ …(1)
We know, $\nu =\dfrac { c }{ \lambda }$
Rearranging the above equation we get,
$c=\nu \lambda$ …(2)
We also know, $\nu =\dfrac { \omega}{ 2\pi }$
Thus, substituting this value in the equation. (2) we get,
$c=\dfrac { \omega}{ 2\pi }\lambda$
Now, substituting $\cfrac { 2\pi }{ \lambda } =k$ we get,
$c=\dfrac { \omega }{ k }$ …(2)
Then, substituting the equation. (3) in equation. (1) we get,
${ E }_{ 0 }=\dfrac { \omega }{ k } { B }_{ 0 }$
Rearranging the above equation we get,
${ E }_{ 0 }k={ B }_{ 0 }\omega$
So, the correct answer is “Option A”.
Note:
The direction of electromagnetic waves is found by vector cross product of the electric field and magnetic field. Electromagnetic radiations also show dual nature i.e. have the properties of a wave as well as the properties of a particle.
Complete answer:
Given: Equations of electromagnetic waves: $E= { E }_{ 0 } \sin { \left( kx-\omega t \right) }$ and $B={ B }_{ 0 }\sin { \left( kx-\omega t \right) }$
The relation between Electric field ${ E }_{ 0 }$ and Magnetic field ${ B }_{ 0 }$ is given by,
${ E }_{ 0 }=c{ B }_{ 0 }$ …(1)
We know, $\nu =\dfrac { c }{ \lambda }$
Rearranging the above equation we get,
$c=\nu \lambda$ …(2)
We also know, $\nu =\dfrac { \omega}{ 2\pi }$
Thus, substituting this value in the equation. (2) we get,
$c=\dfrac { \omega}{ 2\pi }\lambda$
Now, substituting $\cfrac { 2\pi }{ \lambda } =k$ we get,
$c=\dfrac { \omega }{ k }$ …(2)
Then, substituting the equation. (3) in equation. (1) we get,
${ E }_{ 0 }=\dfrac { \omega }{ k } { B }_{ 0 }$
Rearranging the above equation we get,
${ E }_{ 0 }k={ B }_{ 0 }\omega$
So, the correct answer is “Option A”.
Note:
The direction of electromagnetic waves is found by vector cross product of the electric field and magnetic field. Electromagnetic radiations also show dual nature i.e. have the properties of a wave as well as the properties of a particle.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

How much time does it take to bleed after eating p class 12 biology CBSE
