
An electrical meter of internal resistance \[20\,\Omega \] gives a full scale deflection when one milliampere current flows through it. The maximum current that can be measured by using three resistors of resistance \[12\,\Omega \] each, in milliamperes is
A. 10
B. 8
C. 6
D. 4
Answer
563.7k+ views
Hint: We know that, when we connect the resistors parallel to each other, the equivalent resistance decreases. Also, in parallel circuits, the voltage in both arms remains the same. Use Ohm’s law to determine the current in the resistors.
Formula used:
\[I = \dfrac{V}{R}\], where, V is the voltage and R is the resistance of the circuit.
Complete step by step answer:
We know that, when we connect the resistors parallel to each other, the equivalent resistance decreases.
According to Ohm’s law, the current in the circuit is defined as,
\[I = \dfrac{V}{R}\], where, V is the voltage and R is the resistance of the circuit.
From the above expression, we can say that the current in the circuit is inversely proportional to the resistance.
Therefore, the current in the electric meter will be the maximum when the resistance is the minimum. The minimum resistance can be obtained by connecting the three resistors of \[12\,\Omega \] in parallel.
The equivalent resistance of three \[12\,\Omega \] resistors is,
\[\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{12}} + \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{3}{{12}} = \dfrac{1}{4}\]
\[ \Rightarrow {R_{eq}} = 4\,\Omega \]
The voltage in the electrical meter when the internal resistance is \[20\,\Omega \] is,
\[V = {I_L}{R_i}\] …… (1)
The voltage across the resistance \[{R_{eq}} = 4\,\Omega \] is,
\[V = {I_2}{R_{eq}}\] …… (2)
Since the voltage in the parallel circuit does not change, we can write,
\[{I_L}{R_i} = {I_2}{R_{eq}}\]
\[ \Rightarrow {I_2} = \dfrac{{{I_L}{R_i}}}{{{R_{eq}}}}\]
Substitute \[1\,mA\] for \[{I_L}\], \[20\,\Omega \] for \[{R_L}\] and \[4\,\Omega \] for \[{R_{eq}}\] in the above equation.
\[{I_2} = \dfrac{{\left( {1\,mA} \right)\left( {20\,\Omega } \right)}}{{4\,\Omega }}\]
\[ \Rightarrow {I_2} = 5\,mA\]
Therefore, the maximum current that can flow through the electric meter is,
\[{I_{\max }} = 1\,mA + 5\,mA\]
\[ \Rightarrow {I_{\max }} = 6\,mA\]
So, the correct answer is “Option C”.
Note:
Students should remember the change in voltage and current in the series and parallel combination. The internal resistance of the electrical resistance is due to the resistance of the electric component in the circuit. This internal resistance is usually neglected in calculations.
Formula used:
\[I = \dfrac{V}{R}\], where, V is the voltage and R is the resistance of the circuit.
Complete step by step answer:
We know that, when we connect the resistors parallel to each other, the equivalent resistance decreases.
According to Ohm’s law, the current in the circuit is defined as,
\[I = \dfrac{V}{R}\], where, V is the voltage and R is the resistance of the circuit.
From the above expression, we can say that the current in the circuit is inversely proportional to the resistance.
Therefore, the current in the electric meter will be the maximum when the resistance is the minimum. The minimum resistance can be obtained by connecting the three resistors of \[12\,\Omega \] in parallel.
The equivalent resistance of three \[12\,\Omega \] resistors is,
\[\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{12}} + \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{3}{{12}} = \dfrac{1}{4}\]
\[ \Rightarrow {R_{eq}} = 4\,\Omega \]
The voltage in the electrical meter when the internal resistance is \[20\,\Omega \] is,
\[V = {I_L}{R_i}\] …… (1)
The voltage across the resistance \[{R_{eq}} = 4\,\Omega \] is,
\[V = {I_2}{R_{eq}}\] …… (2)
Since the voltage in the parallel circuit does not change, we can write,
\[{I_L}{R_i} = {I_2}{R_{eq}}\]
\[ \Rightarrow {I_2} = \dfrac{{{I_L}{R_i}}}{{{R_{eq}}}}\]
Substitute \[1\,mA\] for \[{I_L}\], \[20\,\Omega \] for \[{R_L}\] and \[4\,\Omega \] for \[{R_{eq}}\] in the above equation.
\[{I_2} = \dfrac{{\left( {1\,mA} \right)\left( {20\,\Omega } \right)}}{{4\,\Omega }}\]
\[ \Rightarrow {I_2} = 5\,mA\]
Therefore, the maximum current that can flow through the electric meter is,
\[{I_{\max }} = 1\,mA + 5\,mA\]
\[ \Rightarrow {I_{\max }} = 6\,mA\]
So, the correct answer is “Option C”.
Note:
Students should remember the change in voltage and current in the series and parallel combination. The internal resistance of the electrical resistance is due to the resistance of the electric component in the circuit. This internal resistance is usually neglected in calculations.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

