
An alternating emf given by $E=300\sin \left[ \left( 100\pi \right)t \right]$ volt is applied to a resistance of 100 ohms. The rms current through the circuit is (in amperes):
\[A.\quad \dfrac{3}{\sqrt{2}}\]
\[B.\quad \dfrac{9}{\sqrt{2}}\]
\[C.\quad 3\]
\[D.\quad \dfrac{6}{\sqrt{2}}\]
Answer
596.4k+ views
Hint: One must know, how to find the RMS value of an alternating voltage, that is for alternating voltage $V={{V}_{0}}\sin \omega t$ the RMS value is \[\dfrac{V_{0}^{{}}}{\sqrt{2}}.\] Using the Ohm’s law: $V=IR\Rightarrow I=\dfrac{V}{R}$, we can find correspondingly the RMS value of current in the circuit as; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$.
Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value $=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}$.
Therefore, the average value of square of f(x) is, $\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}$.
Hence, the RMS value of of the function f(x) will be, RMS value $=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}$.
Now, let’s consider the case for the standard alternating voltage given by $V={{V}_{0}}\sin \omega t$. Since, this is a sinusoidal wave equation, hence, the time period is $2\pi .$ Hence, using these values, that is T=$2\pi $and f(x)= $V={{V}_{0}}\sin \omega t$. Therefore, the RMS value becomes, $\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{V}_{0}}\sin \omega t)}^{2}}dt}}$.
That is, $\sqrt{\dfrac{V_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}$, here we will substitute the value of${{\sin }^{2}}(\omega t)$as${{\cos }^{2}}(\omega t)=\dfrac{1}{2}(1+\cos 2\omega t).$ Further, we will also take out the constant values. This makes the RMS value to be, $\dfrac{V_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1+\cos 2\omega t)dt}}$. That is, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1+\cos 2\omega t)dt}}$.
We know that, $\omega =\dfrac{2\pi }{T}$. Hence the integral becomes, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }+[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]+[\dfrac{\sin 2\pi -\sin 0}{\omega }]}$.
Therefore, the RMS eventually becomes, \[\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{V_{0}^{{}}}{\sqrt{2}}.\]
We will now use Ohm's law, which is given by; $V=IR\Rightarrow I=\dfrac{V}{R}$. The given value of the alternating emf is: $E=300\sin \left[ \left( 100\pi \right)t \right]$. Comparing this value against the standard alternating voltage value of: $V={{V}_{0}}\sin \omega t$. Therefore;${{V}_{0}}=300$Volts. Hence, the RMS value of the emf is: \[\dfrac{V_{0}^{{}}}{\sqrt{2}}=\dfrac{300}{\sqrt{2}}\Rightarrow {{V}_{rms}}=\dfrac{300}{\sqrt{2}}\].
The given value of resistance is $R=100\Omega $.
Hence, using the Ohm’s law relation, we will get; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$. That is; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}=\dfrac{300}{\sqrt{2}}\times \dfrac{1}{100}\Rightarrow {{I}_{rms}}=\dfrac{3}{\sqrt{2}}$Ampere. That is, Option A.
Note:
The original value of an alternating voltage is, \[V={{V}_{0}}\sin (\omega t\pm \delta )\], here $(\delta )$refers to the phase angle. For the current problem, the phase angle is equal to zero. The phase angle is the amount or angle with which the alternating voltage $({{V}_{1}}={{V}_{0}}\sin (\omega t\pm \delta ))$ will lead or lag against $V={{V}_{0}}\sin \omega t$.
$({{V}_{1}})$ will be leading against $V={{V}_{0}}\sin \omega t$, when the phase angle is positive. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t+\delta )$. Similarly, $({{V}_{1}})$ will be lagging behind $V={{V}_{0}}\sin \omega t$, when the phase angle is negative. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t-\delta )$.
Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value $=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}$.
Therefore, the average value of square of f(x) is, $\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}$.
Hence, the RMS value of of the function f(x) will be, RMS value $=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}$.
Now, let’s consider the case for the standard alternating voltage given by $V={{V}_{0}}\sin \omega t$. Since, this is a sinusoidal wave equation, hence, the time period is $2\pi .$ Hence, using these values, that is T=$2\pi $and f(x)= $V={{V}_{0}}\sin \omega t$. Therefore, the RMS value becomes, $\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{V}_{0}}\sin \omega t)}^{2}}dt}}$.
That is, $\sqrt{\dfrac{V_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}$, here we will substitute the value of${{\sin }^{2}}(\omega t)$as${{\cos }^{2}}(\omega t)=\dfrac{1}{2}(1+\cos 2\omega t).$ Further, we will also take out the constant values. This makes the RMS value to be, $\dfrac{V_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1+\cos 2\omega t)dt}}$. That is, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1+\cos 2\omega t)dt}}$.
We know that, $\omega =\dfrac{2\pi }{T}$. Hence the integral becomes, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }+[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]+[\dfrac{\sin 2\pi -\sin 0}{\omega }]}$.
Therefore, the RMS eventually becomes, \[\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{V_{0}^{{}}}{\sqrt{2}}.\]
We will now use Ohm's law, which is given by; $V=IR\Rightarrow I=\dfrac{V}{R}$. The given value of the alternating emf is: $E=300\sin \left[ \left( 100\pi \right)t \right]$. Comparing this value against the standard alternating voltage value of: $V={{V}_{0}}\sin \omega t$. Therefore;${{V}_{0}}=300$Volts. Hence, the RMS value of the emf is: \[\dfrac{V_{0}^{{}}}{\sqrt{2}}=\dfrac{300}{\sqrt{2}}\Rightarrow {{V}_{rms}}=\dfrac{300}{\sqrt{2}}\].
The given value of resistance is $R=100\Omega $.
Hence, using the Ohm’s law relation, we will get; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$. That is; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}=\dfrac{300}{\sqrt{2}}\times \dfrac{1}{100}\Rightarrow {{I}_{rms}}=\dfrac{3}{\sqrt{2}}$Ampere. That is, Option A.
Note:
The original value of an alternating voltage is, \[V={{V}_{0}}\sin (\omega t\pm \delta )\], here $(\delta )$refers to the phase angle. For the current problem, the phase angle is equal to zero. The phase angle is the amount or angle with which the alternating voltage $({{V}_{1}}={{V}_{0}}\sin (\omega t\pm \delta ))$ will lead or lag against $V={{V}_{0}}\sin \omega t$.
$({{V}_{1}})$ will be leading against $V={{V}_{0}}\sin \omega t$, when the phase angle is positive. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t+\delta )$. Similarly, $({{V}_{1}})$ will be lagging behind $V={{V}_{0}}\sin \omega t$, when the phase angle is negative. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t-\delta )$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

