
An alternating emf given by $E=300\sin \left[ \left( 100\pi \right)t \right]$ volt is applied to a resistance of 100 ohms. The rms current through the circuit is (in amperes):
\[A.\quad \dfrac{3}{\sqrt{2}}\]
\[B.\quad \dfrac{9}{\sqrt{2}}\]
\[C.\quad 3\]
\[D.\quad \dfrac{6}{\sqrt{2}}\]
Answer
582.3k+ views
Hint: One must know, how to find the RMS value of an alternating voltage, that is for alternating voltage $V={{V}_{0}}\sin \omega t$ the RMS value is \[\dfrac{V_{0}^{{}}}{\sqrt{2}}.\] Using the Ohm’s law: $V=IR\Rightarrow I=\dfrac{V}{R}$, we can find correspondingly the RMS value of current in the circuit as; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$.
Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value $=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}$.
Therefore, the average value of square of f(x) is, $\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}$.
Hence, the RMS value of of the function f(x) will be, RMS value $=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}$.
Now, let’s consider the case for the standard alternating voltage given by $V={{V}_{0}}\sin \omega t$. Since, this is a sinusoidal wave equation, hence, the time period is $2\pi .$ Hence, using these values, that is T=$2\pi $and f(x)= $V={{V}_{0}}\sin \omega t$. Therefore, the RMS value becomes, $\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{V}_{0}}\sin \omega t)}^{2}}dt}}$.
That is, $\sqrt{\dfrac{V_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}$, here we will substitute the value of${{\sin }^{2}}(\omega t)$as${{\cos }^{2}}(\omega t)=\dfrac{1}{2}(1+\cos 2\omega t).$ Further, we will also take out the constant values. This makes the RMS value to be, $\dfrac{V_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1+\cos 2\omega t)dt}}$. That is, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1+\cos 2\omega t)dt}}$.
We know that, $\omega =\dfrac{2\pi }{T}$. Hence the integral becomes, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }+[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]+[\dfrac{\sin 2\pi -\sin 0}{\omega }]}$.
Therefore, the RMS eventually becomes, \[\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{V_{0}^{{}}}{\sqrt{2}}.\]
We will now use Ohm's law, which is given by; $V=IR\Rightarrow I=\dfrac{V}{R}$. The given value of the alternating emf is: $E=300\sin \left[ \left( 100\pi \right)t \right]$. Comparing this value against the standard alternating voltage value of: $V={{V}_{0}}\sin \omega t$. Therefore;${{V}_{0}}=300$Volts. Hence, the RMS value of the emf is: \[\dfrac{V_{0}^{{}}}{\sqrt{2}}=\dfrac{300}{\sqrt{2}}\Rightarrow {{V}_{rms}}=\dfrac{300}{\sqrt{2}}\].
The given value of resistance is $R=100\Omega $.
Hence, using the Ohm’s law relation, we will get; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$. That is; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}=\dfrac{300}{\sqrt{2}}\times \dfrac{1}{100}\Rightarrow {{I}_{rms}}=\dfrac{3}{\sqrt{2}}$Ampere. That is, Option A.
Note:
The original value of an alternating voltage is, \[V={{V}_{0}}\sin (\omega t\pm \delta )\], here $(\delta )$refers to the phase angle. For the current problem, the phase angle is equal to zero. The phase angle is the amount or angle with which the alternating voltage $({{V}_{1}}={{V}_{0}}\sin (\omega t\pm \delta ))$ will lead or lag against $V={{V}_{0}}\sin \omega t$.
$({{V}_{1}})$ will be leading against $V={{V}_{0}}\sin \omega t$, when the phase angle is positive. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t+\delta )$. Similarly, $({{V}_{1}})$ will be lagging behind $V={{V}_{0}}\sin \omega t$, when the phase angle is negative. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t-\delta )$.
Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value $=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}$.
Therefore, the average value of square of f(x) is, $\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}$.
Hence, the RMS value of of the function f(x) will be, RMS value $=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}$.
Now, let’s consider the case for the standard alternating voltage given by $V={{V}_{0}}\sin \omega t$. Since, this is a sinusoidal wave equation, hence, the time period is $2\pi .$ Hence, using these values, that is T=$2\pi $and f(x)= $V={{V}_{0}}\sin \omega t$. Therefore, the RMS value becomes, $\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{V}_{0}}\sin \omega t)}^{2}}dt}}$.
That is, $\sqrt{\dfrac{V_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}$, here we will substitute the value of${{\sin }^{2}}(\omega t)$as${{\cos }^{2}}(\omega t)=\dfrac{1}{2}(1+\cos 2\omega t).$ Further, we will also take out the constant values. This makes the RMS value to be, $\dfrac{V_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1+\cos 2\omega t)dt}}$. That is, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1+\cos 2\omega t)dt}}$.
We know that, $\omega =\dfrac{2\pi }{T}$. Hence the integral becomes, $\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }+[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]+[\dfrac{\sin 2\pi -\sin 0}{\omega }]}$.
Therefore, the RMS eventually becomes, \[\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{V_{0}^{{}}}{\sqrt{2}}.\]
We will now use Ohm's law, which is given by; $V=IR\Rightarrow I=\dfrac{V}{R}$. The given value of the alternating emf is: $E=300\sin \left[ \left( 100\pi \right)t \right]$. Comparing this value against the standard alternating voltage value of: $V={{V}_{0}}\sin \omega t$. Therefore;${{V}_{0}}=300$Volts. Hence, the RMS value of the emf is: \[\dfrac{V_{0}^{{}}}{\sqrt{2}}=\dfrac{300}{\sqrt{2}}\Rightarrow {{V}_{rms}}=\dfrac{300}{\sqrt{2}}\].
The given value of resistance is $R=100\Omega $.
Hence, using the Ohm’s law relation, we will get; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}$. That is; ${{I}_{rms}}=\dfrac{{{V}_{rms}}}{R}=\dfrac{300}{\sqrt{2}}\times \dfrac{1}{100}\Rightarrow {{I}_{rms}}=\dfrac{3}{\sqrt{2}}$Ampere. That is, Option A.
Note:
The original value of an alternating voltage is, \[V={{V}_{0}}\sin (\omega t\pm \delta )\], here $(\delta )$refers to the phase angle. For the current problem, the phase angle is equal to zero. The phase angle is the amount or angle with which the alternating voltage $({{V}_{1}}={{V}_{0}}\sin (\omega t\pm \delta ))$ will lead or lag against $V={{V}_{0}}\sin \omega t$.
$({{V}_{1}})$ will be leading against $V={{V}_{0}}\sin \omega t$, when the phase angle is positive. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t+\delta )$. Similarly, $({{V}_{1}})$ will be lagging behind $V={{V}_{0}}\sin \omega t$, when the phase angle is negative. That is, ${{V}_{1}}={{V}_{0}}\sin (\omega t-\delta )$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

