
An ac source producing emf $ \text{e}={{\text{E}}_{0}}\left[ \cos \left( 100\text{ }\!\!\pi\!\!\text{ t} \right)+\cos \left( 500\text{ }\!\!\pi\!\!\text{ t} \right) \right] $ is connected in series with a capacitor and a resistor. The steady state current in the circuit is found to be $ \text{i}={{\text{I}}_{1}}\cos \left( 100\text{ }\!\!\pi\!\!\text{ t}+{{\text{ }\!\!\theta\!\!\text{ }}_{1}} \right)+{{\text{I}}_{2}}\cos \left( 500\text{ }\!\!\pi\!\!\text{ t}+\text{ }\!\!\theta\!\!\text{ 2} \right) $
(A) $ {{\text{I}}_{1}}>{{\text{I}}_{2}} $
(B) $ {{\text{I}}_{1}}\text{=}{{\text{I}}_{2}} $
(C) $ {{\text{I}}_{1}}\text{}{{\text{I}}_{2}} $
(D) Nothing can be said
Answer
564.6k+ views
Hint: A capacitor is a passive device that stores energy in its electric field and returns energy to the circuit whenever required capacitors do not store Ac voltage
Charge on capacitor is Q=CV
and current $ \text{i}=\dfrac{\text{dQ}}{\text{dt}} $
Complete step by step solution
We can assume two different sources connected in series with same orientation
$ \begin{align}
& {{\text{E}}_{1}}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\!\!\pi\!\!\text{ t} \\
& {{\text{E}}_{2}}={{\text{E}}_{\text{0}}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \\
\end{align} $
Such that
$ \begin{align}
& \text{e}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\!\!\pi\!\!\text{ t}+{{\text{E}}_{\text{0}}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \\
& \text{ =}{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] \\
\end{align} $
Becomes,
$ \text{e}={{\text{E}}_{1}}+{{\text{E}}_{2}} $
The charge on the capacitor during the steady state is given by
Q=CE
Putting the value of E in this equation
$ \text{Q}=\text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] $
The steady state current is, thus given by
$ \begin{align}
& \text{i}=\dfrac{\text{dQ}}{\text{dt}} \\
& \text{i}=\dfrac{\text{d}}{\text{dt}}\left[ \text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] \right] \\
& \text{i}=\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 100 }\!\!\pi\!\!\text{ t} \right)+\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right) \\
& \text{C }{{\text{E}}_{0}}\left( 100\text{ }\!\!\pi\!\!\text{ } \right)\text{ sin100 }\!\!\pi\!\!\text{ t}+\text{C }{{\text{E}}_{0}}\left( 500\text{ }\!\!\pi\!\!\text{ } \right)\text{ sin500 }\!\!\pi\!\!\text{ t} \\
& \text{ }\left[ \because \dfrac{\text{d}}{\text{dt}}\cos \text{ t}=\sin \text{ t} \right] \\
\end{align} $
$ {{\text{i}}_{1}}\text{ sin 100 }\!\!\pi\!\!\text{ t}+{{\text{i}}_{2}}\text{ sin 500 }\!\!\pi\!\!\text{ t} $
Where $ {{\text{i}}_{1}}=\text{C }{{\text{E}}_{0}}\left( \text{100 }\!\!\pi\!\!\text{ t} \right)\text{ } $
$ {{\text{i}}_{2}}=\text{C }{{\text{E}}_{0}}\left( \text{500 }\!\!\pi\!\!\text{ t} \right)\text{ } $
Now, using the principle of superposition
We get,
$ \text{i}={{\text{i}}_{1}}\cos \text{ }\left( \text{100 }\!\!\pi\!\!\text{ t}+{{\text{ }\!\!\theta\!\!\text{ }}_{1}} \right)+{{\text{i}}_{2}}\cos \text{ }\left( \text{500 }\!\!\pi\!\!\text{ t}+{{\text{ }\!\!\theta\!\!\text{ }}_{2}} \right)\text{ } $
From this expression, we get
$ \begin{align}
& {{\text{i}}_{1}}={{\text{E}}_{0}}\text{100 }\!\!\pi\!\!\text{ C} \\
& {{\text{i}}_{2}}={{\text{E}}_{0}}\text{500 }\!\!\pi\!\!\text{ C} \\
\end{align} $
From this we can easily predict that
$ {{\text{i}}_{2}}>{{\text{i}}_{1}} $
Therefore option (C) is correct.
Note
Capacitor and battery are different devices because the potential energy in a capacitor is stored in an electric field, where a battery stores its potential energy in a chemical form. Knowledge of some trigonometric rules and differentiation rule should be must be careful while solving the differentiation because students get confused easily
Charge on capacitor is Q=CV
and current $ \text{i}=\dfrac{\text{dQ}}{\text{dt}} $
Complete step by step solution
We can assume two different sources connected in series with same orientation
$ \begin{align}
& {{\text{E}}_{1}}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\!\!\pi\!\!\text{ t} \\
& {{\text{E}}_{2}}={{\text{E}}_{\text{0}}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \\
\end{align} $
Such that
$ \begin{align}
& \text{e}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\!\!\pi\!\!\text{ t}+{{\text{E}}_{\text{0}}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \\
& \text{ =}{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] \\
\end{align} $
Becomes,
$ \text{e}={{\text{E}}_{1}}+{{\text{E}}_{2}} $
The charge on the capacitor during the steady state is given by
Q=CE
Putting the value of E in this equation
$ \text{Q}=\text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] $
The steady state current is, thus given by
$ \begin{align}
& \text{i}=\dfrac{\text{dQ}}{\text{dt}} \\
& \text{i}=\dfrac{\text{d}}{\text{dt}}\left[ \text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\!\!\pi\!\!\text{ t}+\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right] \right] \\
& \text{i}=\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 100 }\!\!\pi\!\!\text{ t} \right)+\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 500 }\!\!\pi\!\!\text{ t} \right) \\
& \text{C }{{\text{E}}_{0}}\left( 100\text{ }\!\!\pi\!\!\text{ } \right)\text{ sin100 }\!\!\pi\!\!\text{ t}+\text{C }{{\text{E}}_{0}}\left( 500\text{ }\!\!\pi\!\!\text{ } \right)\text{ sin500 }\!\!\pi\!\!\text{ t} \\
& \text{ }\left[ \because \dfrac{\text{d}}{\text{dt}}\cos \text{ t}=\sin \text{ t} \right] \\
\end{align} $
$ {{\text{i}}_{1}}\text{ sin 100 }\!\!\pi\!\!\text{ t}+{{\text{i}}_{2}}\text{ sin 500 }\!\!\pi\!\!\text{ t} $
Where $ {{\text{i}}_{1}}=\text{C }{{\text{E}}_{0}}\left( \text{100 }\!\!\pi\!\!\text{ t} \right)\text{ } $
$ {{\text{i}}_{2}}=\text{C }{{\text{E}}_{0}}\left( \text{500 }\!\!\pi\!\!\text{ t} \right)\text{ } $
Now, using the principle of superposition
We get,
$ \text{i}={{\text{i}}_{1}}\cos \text{ }\left( \text{100 }\!\!\pi\!\!\text{ t}+{{\text{ }\!\!\theta\!\!\text{ }}_{1}} \right)+{{\text{i}}_{2}}\cos \text{ }\left( \text{500 }\!\!\pi\!\!\text{ t}+{{\text{ }\!\!\theta\!\!\text{ }}_{2}} \right)\text{ } $
From this expression, we get
$ \begin{align}
& {{\text{i}}_{1}}={{\text{E}}_{0}}\text{100 }\!\!\pi\!\!\text{ C} \\
& {{\text{i}}_{2}}={{\text{E}}_{0}}\text{500 }\!\!\pi\!\!\text{ C} \\
\end{align} $
From this we can easily predict that
$ {{\text{i}}_{2}}>{{\text{i}}_{1}} $
Therefore option (C) is correct.
Note
Capacitor and battery are different devices because the potential energy in a capacitor is stored in an electric field, where a battery stores its potential energy in a chemical form. Knowledge of some trigonometric rules and differentiation rule should be must be careful while solving the differentiation because students get confused easily
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

