Answer
Verified
411k+ views
Hint: In this solution, we will determine the net impedance of the circuit using the relation for the series LCR circuit. Then we will use the relation of current and impedance to find the voltage across the inductor.
Formula used: In this solution, we will use the following formula:
- Magnitude of Impedance of a series LCR circuit: $ \left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} $ where $ R $ is the resistance, $ {X_L} $ is the inductive impedance, and $ {X_C} $ is the capacitive inductance.
Complete step by step answer
In the circuit given to us we can see that a capacitor and a resistor are connected in series with an A.C. power supply such that the resistance is $ 3\;\Omega $ and the inductor of reactance $ 4\;\Omega $ . Then the net impedance of the circuit will be
$ \left| z \right| = \sqrt {{R^2} + X_L^2} $
$ \Rightarrow \left| z \right| = \sqrt {{3^2} + {4^2}} $
Which gives us
$ \left| z \right| = 5\,\Omega $
Now the voltage of the AC supply is $ E = 10\sin \omega t $ . So, at time $ t = \mu \;/\omega $ , the external voltage will be
$ E = 10\sin \left( {\omega \dfrac{\mu }{\omega }} \right) $
$ \Rightarrow E = 10\sin \mu $
Now the current across the inductor can be calculated as
$ {i_L} = \dfrac{E}{{{X_L}}} $
Which gives us
$ {i_L} = \dfrac{{10\sin \mu }}{4} $
Now since $ \sin \mu = \sin {10^{ - 6}} \to 0 $ , the potential across the inductor will also be zero.
Hence the correct choice is option (C).
Note
The reason the potential drop across the inductor will be zero since that, at this point, the inductor will have been completely discharged assuming it was initially discharged. So, if the external potential increases, the inductor will oppose the change in current and induce its own potential, thereby allowing no current to flow in the circuit. The trick in this question hence is to observe the time period at which we want to calculate the potential difference is just at the beginning of the time period of oscillation of alternating frequency.
Formula used: In this solution, we will use the following formula:
- Magnitude of Impedance of a series LCR circuit: $ \left| z \right| = \sqrt {{R^2} + {{\left( {X_L^2 - X_C^2} \right)}^2}} $ where $ R $ is the resistance, $ {X_L} $ is the inductive impedance, and $ {X_C} $ is the capacitive inductance.
Complete step by step answer
In the circuit given to us we can see that a capacitor and a resistor are connected in series with an A.C. power supply such that the resistance is $ 3\;\Omega $ and the inductor of reactance $ 4\;\Omega $ . Then the net impedance of the circuit will be
$ \left| z \right| = \sqrt {{R^2} + X_L^2} $
$ \Rightarrow \left| z \right| = \sqrt {{3^2} + {4^2}} $
Which gives us
$ \left| z \right| = 5\,\Omega $
Now the voltage of the AC supply is $ E = 10\sin \omega t $ . So, at time $ t = \mu \;/\omega $ , the external voltage will be
$ E = 10\sin \left( {\omega \dfrac{\mu }{\omega }} \right) $
$ \Rightarrow E = 10\sin \mu $
Now the current across the inductor can be calculated as
$ {i_L} = \dfrac{E}{{{X_L}}} $
Which gives us
$ {i_L} = \dfrac{{10\sin \mu }}{4} $
Now since $ \sin \mu = \sin {10^{ - 6}} \to 0 $ , the potential across the inductor will also be zero.
Hence the correct choice is option (C).
Note
The reason the potential drop across the inductor will be zero since that, at this point, the inductor will have been completely discharged assuming it was initially discharged. So, if the external potential increases, the inductor will oppose the change in current and induce its own potential, thereby allowing no current to flow in the circuit. The trick in this question hence is to observe the time period at which we want to calculate the potential difference is just at the beginning of the time period of oscillation of alternating frequency.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations