
A) What is the expansion formula for \[{(a - b)^2}\]
B) Expand \[{(x - 3)^3}\]
C) In rectangle ABCD, If \[l\left( {AB} \right) = 8cm\], \[l\left( {BC} \right) = 6cm\] then find \[l\left( {CD} \right)\& l\left( {AC} \right)\]
D) What are the factors of \[{x^2} - 16\]
Answer
585.3k+ views
Hint: The Binomial Theorem states that, where n is a positive integer,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {n{C_k}{x^{n - k}}{y^k}} = {x^n} + n{C_1}{x^{n - 1}}y + n{C_2}{x^{n - 2}}{y^2} + ......\]
Formula used- $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
a) We have to find the expansion formula for \[{(a - b)^2}\]
\[{(a - b)^2} = (a - b)(a - b)\]
Multiply the two factors we have,
\[ = {a^2} - ab - ab + {b^2}\]
Simplifying the above equation,
\[ = {a^2} - 2ab + {b^2}\]
Hence, the expansion formula for \[{(a - b)^2}\]is \[{a^2} - 2ab + {b^2}\].
b) We have to Expand \[{(x - 3)^3}\]
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {n{C_k}{x^{n - k}}{y^k}} = {x^n} + n{C_1}{x^{n - 1}}y + n{C_2}{x^{n - 2}}{y^2} + ......\]
Putting y=-3 and apply binomial theorem to get the expansion of \[{(x - 3)^3}\] \[{\{ x + ( - 3)\} ^3} = \sum\limits_{k = 0}^3 {3{C_k}{x^{3 - k}}{{( - 3)}^k}} \]
\[ = {x^3} + 3{C_1}{x^{3 - 1}}( - 3) + 3{C_2}{x^{3 - 2}}{( - 3)^2} + 3{C_3}{x^{3 - 3}}{( - 3)^3}\]
Using the formula we mention in hint $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$,
\[ = {x^3} - \dfrac{{3!}}{{1!(3 - 1)!}}3{x^2} + \dfrac{{3!}}{{2!(3 - 2)!}}9x - \dfrac{{3!}}{{3!}} \times 27\]
Simplifying that,
\[ = {x^3} - \dfrac{{3 \times 2 \times 1}}{{2 \times 1}}3{x^2} + \dfrac{{3 \times 2 \times 1}}{{2 \times 1}}9x - 27\]
Multiply and divide the terms, we get,
\[ = {x^3} - 9{x^2} + 27x - 27\]
Hence expanding \[{(x - 3)^3}\] we get,
\[{x^3} - 9{x^2} + 27x - 27\]
c) In rectangle ABCD, If \[l\left( {AB} \right) = 8cm\], \[l\left( {BC} \right) = 6cm\] then find \[l\left( {CD} \right)\& l\left( {AC} \right)\]
We have to find out, \[l\left( {CD} \right)\& l\left( {AC} \right)\]
For a rectangle the opposite sides are of the same length.
Therefore, \[AB{\text{ }} = {\text{ }}CD,{\text{ }}BC{\text{ }} = {\text{ }}DA\]
The measure of sides,
\[\begin{array}{*{20}{l}}
{l\left( {AB} \right) = 8cm,{\text{ }}l\left( {BC} \right) = 6cm} \\
{{\text{So}},{\text{ }}l\left( {AB} \right) = l\left( {CD} \right) = 8cm}
\end{array}\]
Thus, \[l\left( {CD} \right) = 8cm\].
The diagonal is AC, since ABCD is a rectangle so the angles are right angle.
Applying Pythagoras theorem,
\[A{C^2} = A{B^2} + B{C^2}\]
Substituting the values,
\[AC = \sqrt {{8^2} + {6^2}} \]
\[ = \sqrt {64 + 36} \]
= \sqrt {100} \\
= 10{\text{ cm}} \\
Then the length of AC is 10cm.
\[l\left( {AC} \right) = 10cm.\]
D) We have to find out the factor of \[{x^2} - 16\]
Applying the formula,
\[{a^2} - {b^2} = (a + b)(a - b)\]
Using the above formula,
\[{x^2} - 16\]\[ = {x^2} - {4^2}\]
\[ = (x + 4)(x - 4)\]
So the factors are \[\left( {x + 4} \right){\text{ and }}\left( {x - 4} \right)\]
Note: A combination is a grouping or subset of items.
For a combination,
\[C(n,r){ = ^n}{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by \[n!\]and defined by
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \ldots \ldots .2.1\]
\[{(x + y)^n} = \sum\limits_{k = 0}^n {n{C_k}{x^{n - k}}{y^k}} = {x^n} + n{C_1}{x^{n - 1}}y + n{C_2}{x^{n - 2}}{y^2} + ......\]
Formula used- $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
a) We have to find the expansion formula for \[{(a - b)^2}\]
\[{(a - b)^2} = (a - b)(a - b)\]
Multiply the two factors we have,
\[ = {a^2} - ab - ab + {b^2}\]
Simplifying the above equation,
\[ = {a^2} - 2ab + {b^2}\]
Hence, the expansion formula for \[{(a - b)^2}\]is \[{a^2} - 2ab + {b^2}\].
b) We have to Expand \[{(x - 3)^3}\]
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {n{C_k}{x^{n - k}}{y^k}} = {x^n} + n{C_1}{x^{n - 1}}y + n{C_2}{x^{n - 2}}{y^2} + ......\]
Putting y=-3 and apply binomial theorem to get the expansion of \[{(x - 3)^3}\] \[{\{ x + ( - 3)\} ^3} = \sum\limits_{k = 0}^3 {3{C_k}{x^{3 - k}}{{( - 3)}^k}} \]
\[ = {x^3} + 3{C_1}{x^{3 - 1}}( - 3) + 3{C_2}{x^{3 - 2}}{( - 3)^2} + 3{C_3}{x^{3 - 3}}{( - 3)^3}\]
Using the formula we mention in hint $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$,
\[ = {x^3} - \dfrac{{3!}}{{1!(3 - 1)!}}3{x^2} + \dfrac{{3!}}{{2!(3 - 2)!}}9x - \dfrac{{3!}}{{3!}} \times 27\]
Simplifying that,
\[ = {x^3} - \dfrac{{3 \times 2 \times 1}}{{2 \times 1}}3{x^2} + \dfrac{{3 \times 2 \times 1}}{{2 \times 1}}9x - 27\]
Multiply and divide the terms, we get,
\[ = {x^3} - 9{x^2} + 27x - 27\]
Hence expanding \[{(x - 3)^3}\] we get,
\[{x^3} - 9{x^2} + 27x - 27\]
c) In rectangle ABCD, If \[l\left( {AB} \right) = 8cm\], \[l\left( {BC} \right) = 6cm\] then find \[l\left( {CD} \right)\& l\left( {AC} \right)\]
We have to find out, \[l\left( {CD} \right)\& l\left( {AC} \right)\]
For a rectangle the opposite sides are of the same length.
Therefore, \[AB{\text{ }} = {\text{ }}CD,{\text{ }}BC{\text{ }} = {\text{ }}DA\]
The measure of sides,
\[\begin{array}{*{20}{l}}
{l\left( {AB} \right) = 8cm,{\text{ }}l\left( {BC} \right) = 6cm} \\
{{\text{So}},{\text{ }}l\left( {AB} \right) = l\left( {CD} \right) = 8cm}
\end{array}\]
Thus, \[l\left( {CD} \right) = 8cm\].
The diagonal is AC, since ABCD is a rectangle so the angles are right angle.
Applying Pythagoras theorem,
\[A{C^2} = A{B^2} + B{C^2}\]
Substituting the values,
\[AC = \sqrt {{8^2} + {6^2}} \]
\[ = \sqrt {64 + 36} \]
= \sqrt {100} \\
= 10{\text{ cm}} \\
Then the length of AC is 10cm.
\[l\left( {AC} \right) = 10cm.\]
D) We have to find out the factor of \[{x^2} - 16\]
Applying the formula,
\[{a^2} - {b^2} = (a + b)(a - b)\]
Using the above formula,
\[{x^2} - 16\]\[ = {x^2} - {4^2}\]
\[ = (x + 4)(x - 4)\]
So the factors are \[\left( {x + 4} \right){\text{ and }}\left( {x - 4} \right)\]
Note: A combination is a grouping or subset of items.
For a combination,
\[C(n,r){ = ^n}{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by \[n!\]and defined by
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \ldots \ldots .2.1\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

