
A transformation is described by the equation \[AX+B={{X}^{'}}\] , where \[A=\left( \begin{matrix}
0 & -3 \\
1 & 0 \\
\end{matrix} \right)\] and \[B=\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)\] . Find the image of the straight line with equation \[y=-2x+6\] under the transformation?
Answer
558k+ views
Hint: The above mentioned problem is a very simple example of transformation matrix. In such type of problems, we proceed by assuming that the matrix value of \[X\] is taken to be as, \[X=\left( \begin{matrix}
x \\
y \\
\end{matrix} \right)\] , and also, we assume the matrix value of \[{{X}^{'}}\] , to be as \[{{X}^{'}}=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\] . The given equation \[y=-2x+6\] is assumed to be of the matrix \[X=\left( \begin{matrix}
x \\
y \\
\end{matrix} \right)\] and the equation we are required to find, the image of the given straight line is assumed to be of the matrix \[{{X}^{'}}=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\] . Using the relation of the problem, we find a relation between \[{{X}^{'}}\] and \[X\] .
Complete step by step answer:
Now starting off with the solution, we can firstly try to find out the relation between \[{{X}^{'}}\] and \[X\] . Evaluating the transformation by putting in the values of \[A=\left( \begin{matrix}
0 & -3 \\
1 & 0 \\
\end{matrix} \right)\] and \[B=\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)\] we get,
\[\Rightarrow \left( \begin{matrix}
0 & -3 \\
1 & 0 \\
\end{matrix} \right)\left( \begin{matrix}
x \\
y \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, we do matrix multiplication, to find the relation between \[{{X}^{'}}\] and \[X\]. We evaluate it as,
\[\Rightarrow \left( \begin{matrix}
0x-3y \\
1x+0y \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Multiplying the inner terms and adding the required terms we get,
\[\Rightarrow \left( \begin{matrix}
3y \\
1x \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, adding the first two matrices, we get,
\[\Rightarrow \left( \begin{matrix}
3y-3 \\
x-2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, comparing the above two matrices we can write,
\[\Rightarrow 3y-3={{x}^{'}}\] and \[x-2={{y}^{'}}\]
Now, representing the above two found equations as a function of \[x\] and \[y\] respectively, we get,
\[\Rightarrow y=\dfrac{{{x}^{'}}+3}{3}\] and \[x={{y}^{'}}+2\] ,
Now putting these values of \[x\] and \[y\], in equation \[y=-2x+6\] we get,
\[\Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2\left( {{y}^{'}}+2 \right)+6\]
Now evaluating this we get,
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2{{y}^{'}}-4+6 \\
& \Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2{{y}^{'}}+2 \\
& \Rightarrow {{x}^{'}}+3=-6{{y}^{'}}+6 \\
& \Rightarrow {{x}^{'}}+-6{{y}^{'}}=3 \\
\end{align}\]
Thus the equation \[{{x}^{'}}+-6{{y}^{'}}=3\] is thus our required transformation equation for this problem.
Note: For these types of problems we must remember all the properties of matrices. We must also very carefully find the transformation equation to find the respective relations. After finding out the relations between \[{{X}^{'}}\] and \[X\] , we just substitute one relation in the other, to find our required answer. We must also remember that the two equations of the straight line, one of which is the transformation of the other, lie in the same plane.
x \\
y \\
\end{matrix} \right)\] , and also, we assume the matrix value of \[{{X}^{'}}\] , to be as \[{{X}^{'}}=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\] . The given equation \[y=-2x+6\] is assumed to be of the matrix \[X=\left( \begin{matrix}
x \\
y \\
\end{matrix} \right)\] and the equation we are required to find, the image of the given straight line is assumed to be of the matrix \[{{X}^{'}}=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\] . Using the relation of the problem, we find a relation between \[{{X}^{'}}\] and \[X\] .
Complete step by step answer:
Now starting off with the solution, we can firstly try to find out the relation between \[{{X}^{'}}\] and \[X\] . Evaluating the transformation by putting in the values of \[A=\left( \begin{matrix}
0 & -3 \\
1 & 0 \\
\end{matrix} \right)\] and \[B=\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)\] we get,
\[\Rightarrow \left( \begin{matrix}
0 & -3 \\
1 & 0 \\
\end{matrix} \right)\left( \begin{matrix}
x \\
y \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, we do matrix multiplication, to find the relation between \[{{X}^{'}}\] and \[X\]. We evaluate it as,
\[\Rightarrow \left( \begin{matrix}
0x-3y \\
1x+0y \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Multiplying the inner terms and adding the required terms we get,
\[\Rightarrow \left( \begin{matrix}
3y \\
1x \\
\end{matrix} \right)+\left( \begin{matrix}
-3 \\
2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, adding the first two matrices, we get,
\[\Rightarrow \left( \begin{matrix}
3y-3 \\
x-2 \\
\end{matrix} \right)=\left( \begin{matrix}
{{x}^{'}} \\
{{y}^{'}} \\
\end{matrix} \right)\]
Now, comparing the above two matrices we can write,
\[\Rightarrow 3y-3={{x}^{'}}\] and \[x-2={{y}^{'}}\]
Now, representing the above two found equations as a function of \[x\] and \[y\] respectively, we get,
\[\Rightarrow y=\dfrac{{{x}^{'}}+3}{3}\] and \[x={{y}^{'}}+2\] ,
Now putting these values of \[x\] and \[y\], in equation \[y=-2x+6\] we get,
\[\Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2\left( {{y}^{'}}+2 \right)+6\]
Now evaluating this we get,
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2{{y}^{'}}-4+6 \\
& \Rightarrow \dfrac{{{x}^{'}}+3}{3}=-2{{y}^{'}}+2 \\
& \Rightarrow {{x}^{'}}+3=-6{{y}^{'}}+6 \\
& \Rightarrow {{x}^{'}}+-6{{y}^{'}}=3 \\
\end{align}\]
Thus the equation \[{{x}^{'}}+-6{{y}^{'}}=3\] is thus our required transformation equation for this problem.
Note: For these types of problems we must remember all the properties of matrices. We must also very carefully find the transformation equation to find the respective relations. After finding out the relations between \[{{X}^{'}}\] and \[X\] , we just substitute one relation in the other, to find our required answer. We must also remember that the two equations of the straight line, one of which is the transformation of the other, lie in the same plane.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

