Answer
Verified
396.6k+ views
Hint:In order to solve this question, you must be aware of the concept of Biot-Savart’s law which describes the magnetic field generated by a constant electric current.The Biot Savart Law is an equation describing the magnetic field generated by a constant electric current.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Complete step by step answer:
(a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire loop at its centre is given by:
${B_o}$ = $\dfrac{{\mu I}}{{2r}}$
The radius of the circular loop varies from $a$ to $b$. Therefore, total magnetic induction at the centre is:
${B_r}$ = $\smallint \dfrac{{\mu I}}{{2r}}dN$....................(1)
(where $\dfrac{{\mu I}}{{2r}}$ is magnetic induction due to one turn of radius $r$ and $dN$ is the number of turns in the interval ($r$, $r+dr$)i.e.
$dN =\dfrac{N}{{b - a}}dr $
Substituting value of dN in eq (1) and then integrating between a and b, we obtain
${B_o}$ = $\int_a^b {\dfrac{{\mu I}}{{2r}}} \dfrac{N}{{b - a}}dr$
$\Rightarrow {B_o}$= $\dfrac{{\mu IN}}{{2(b - a)}}\ln \dfrac{b}{a}$
$\Rightarrow {B_o}$ = $\dfrac{{4\pi \times {{10}^{ - 7}} \times 100 \times 8 \times {{10}^{ - 3}}}}{{2(50 \times {{10}^{ - 3}})}} \times 2.303$
$\therefore {B_o}$= $7\mu T$
(b) Magnetic moment of a turn of radius $r$ is
$dM =\dfrac{{Ndr}}{{b - a}} \times i\pi {r^2}$
Total magnetic moment of all turns is
$M = \int {dM} $ (1)
Substituting value of dM in eq(1), we get
$M = \dfrac{N}{{b - a}}i\pi \dfrac{{{b^3} - {a^3}}}{3}$
$\Rightarrow M = \dfrac{{100}}{{(100 - 50) \times {{10}^{ - 3}}}} \times 8 \times {10^{ - 3}}4\pi \times {10^{ - 7}}(\dfrac{{{{0.1}^3} - {{0.05}^3}}}{3})$
$\therefore M =15\,mA$
Note:Biot-Savart’s law is applicable for very small conductors which carry current. It is an equation that gives the magnetic field produced due to a current carrying segment.It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. Biot–Savart law is consistent with both Ampere’s circuital law and Gauss’s theorem.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it