
A tetrahedron has vertices $P(1,2,1),Q(2,1,3),R( - 1,1,2)$ and $O(0,0,0)$. The angle between the faces OPQ and PQR is:
A ${\cos ^{ - 1}}\left( {\dfrac{9}{{35}}} \right)$
B ${\cos ^{ - 1}}\left( {\dfrac{{19}}{{35}}} \right)$
C ${\cos ^{ - 1}}\left( {\dfrac{{17}}{{31}}} \right)$
D ${\cos ^{ - 1}}\left( {\dfrac{7}{{31}}} \right)$
Answer
512.7k+ views
Hint: In this question we have been given a tetrahedron PQRO with vertices, $P(1,2,1),Q(2,1,3),R( - 1,1,2)$and $O(0,0,0)$ we need to find out the angle between the faces OPQ and PQR. For that we need to find the cross product, and after that use the formula:$\cos \theta = \left( {\dfrac{{a.b}}{{\left| a \right|.\left| b \right|}}} \right)$, where $a = \mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to $and $\mathop {b = PQ}\limits^ \to \times \mathop {PR}\limits^ \to $
Complete step-by-step answer:
We have been provided with a tetrahedron PQRO with vertices $P(1,2,1),Q(2,1,3),R( - 1,1,2)$and $O(0,0,0)$,
So, according to the question we need to find the angle between the faces OPQ and PQR. So, for that firstly we need to find the vectors OP and OQ.
$\begin{gathered}
\mathop {OP}\limits^ \to = (\hat i(1 - 0) + \hat j(2 - 0) + \hat k(1 - 0)) \\
\mathop {OQ}\limits^ \to = (\hat i(2 - 0) + \hat j(1 - 0) + \hat k(3 - 0)) \\
\end{gathered} $,
Simplifying it further we get,
$\begin{gathered}
\mathop {OP}\limits^ \to = (1\hat i + 2\hat j + 1\hat k) \\
\mathop {OQ}\limits^ \to = (2\hat i + 1\hat j + 3\hat k) \\
\end{gathered} $
Now we will be calculating the cross product of:
$\begin{gathered}
\mathop {OP}\limits^ \to = (1\hat i + 2\hat j + 1\hat k) \\
\mathop {OQ}\limits^ \to = (2\hat i + 1\hat j + 3\hat k) \\
\end{gathered} $,
So, the cross product: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&1 \\
2&1&3
\end{array}} \right)} \right|$,
Now we will be finding the cross product by solving the above determinant: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = \hat i(6 - 1) - \hat j(3 - 2) + \hat k(1 - 4)$,
The cross product comes out to be: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = 5\hat i - \hat j - 3\hat k$,
Now we will be finding the vectors PQ and PR.
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i(2 - 1) + \hat j(1 - 2) + \hat k(3 - 1)) \\
\mathop {PR}\limits^ \to = (\hat i( - 1 - 2) + \hat j(1 - 2) + \hat k(2 - 1)) \\
\end{gathered} $
Now we will be simplifying them further,
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i - \hat j + 2\hat k) \\
\mathop {PR}\limits^ \to = ( - 2\hat i - \hat j + \hat k) \\
\end{gathered} $
Now we will be calculating the cross product of:
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i - \hat j + 2\hat k) \\
\mathop {PR}\limits^ \to = ( - 2\hat i - \hat j + \hat k) \\
\end{gathered} $,
So, the cross product: $b = \mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to $
$\mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 1}&2 \\
{ - 2}&{ - 1}&1
\end{array}} \right)} \right|$,
Now we will be finding the cross product by solving the above determinant:$\mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to = \hat i( - 1 + 2) - \hat j(1 + 4) + \hat k( - 1 - 2)$,
The cross product comes out to be: $\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to = \hat i - 5\hat j - 3\hat k$,
Now as we want to calculate the angle between OPQ and PQR,
So, we will be using the formula:$\cos \theta = \left( {\dfrac{{a.b}}{{\left| a \right|.\left| b \right|}}} \right)$,
In this question, $a = \mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to $ and $b = \mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to $,
So, we will be putting the values of a and b in $\cos \theta = \left( {\dfrac{{a.b}}{{\left| a \right|.\left| b \right|}}} \right)$,
So, the equation becomes: $\cos \theta = \left( {\dfrac{{\left( {\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to } \right).\left( {\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to } \right)}}{{\left| {\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to } \right|.\left| {\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to } \right|}}} \right)$,
Putting the values, we will get: $\cos \theta = \left( {\dfrac{{(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)}}{{\left| {5\hat i - \hat j - 3\hat k} \right|.\left| {\hat i - 5\hat j - 3\hat k} \right|}}} \right)$,
Now we need to calculate the dot product of: $(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)$,
So, the dot product: $5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right) = 5(1) - 1( - 5) - 3( - 3)$,
The dot product comes out to be: $5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right) = 19$,
Now we need to calculate the value of $\left| {5\hat i - \hat j - 3\hat k} \right|$,
So, it will be: $\left| {5\hat i - \hat j - 3\hat k} \right|$=$\sqrt {({5^2}) + ( - {1^2}) + ( - {3^2})} = \sqrt {35} $,
Now we need to calculate the value of $\left| {\hat i - 5\hat j - 3\hat k} \right|$,
So, it will be: $\left| {\hat i - 5\hat j - 3\hat k} \right|$=$\sqrt {({1^2}) + ( - {5^2}) + ( - {3^2})} = \sqrt {35} $
Keeping this value in $\cos \theta = \left( {\dfrac{{(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)}}{{\left| {5\hat i - \hat j - 3\hat k} \right|.\left| {\hat i - 5\hat j - 3\hat k} \right|}}} \right)$,
The angle between OPQ and PQR: $\cos \theta = \left( {\dfrac{{19}}{{\sqrt {35} .\sqrt {35} }}} \right)$
So, the angle comes out to be: $\begin{gathered}
\cos \theta = \left( {\dfrac{{19}}{{35}}} \right) \\
\theta = {\cos ^{ - 1}}\left( {\dfrac{{19}}{{35}}} \right) \\
\end{gathered} $
So, the correct answer is “Option b”.
Note: In this question do remember that during dot product does not include the direction vectors, because it is a scalar product. While finding the cross product of OP and OQ, PQ and PR find the vectors $\mathop {OP}\limits^ \to ,\mathop {OQ}\limits^ \to ,\mathop {PQ}\limits^ \to ,\mathop {PR}\limits^ \to $ first do avoid any kind of mistakes.
Complete step-by-step answer:
We have been provided with a tetrahedron PQRO with vertices $P(1,2,1),Q(2,1,3),R( - 1,1,2)$and $O(0,0,0)$,
So, according to the question we need to find the angle between the faces OPQ and PQR. So, for that firstly we need to find the vectors OP and OQ.
$\begin{gathered}
\mathop {OP}\limits^ \to = (\hat i(1 - 0) + \hat j(2 - 0) + \hat k(1 - 0)) \\
\mathop {OQ}\limits^ \to = (\hat i(2 - 0) + \hat j(1 - 0) + \hat k(3 - 0)) \\
\end{gathered} $,
Simplifying it further we get,
$\begin{gathered}
\mathop {OP}\limits^ \to = (1\hat i + 2\hat j + 1\hat k) \\
\mathop {OQ}\limits^ \to = (2\hat i + 1\hat j + 3\hat k) \\
\end{gathered} $
Now we will be calculating the cross product of:
$\begin{gathered}
\mathop {OP}\limits^ \to = (1\hat i + 2\hat j + 1\hat k) \\
\mathop {OQ}\limits^ \to = (2\hat i + 1\hat j + 3\hat k) \\
\end{gathered} $,
So, the cross product: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&1 \\
2&1&3
\end{array}} \right)} \right|$,
Now we will be finding the cross product by solving the above determinant: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = \hat i(6 - 1) - \hat j(3 - 2) + \hat k(1 - 4)$,
The cross product comes out to be: $\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to = 5\hat i - \hat j - 3\hat k$,
Now we will be finding the vectors PQ and PR.
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i(2 - 1) + \hat j(1 - 2) + \hat k(3 - 1)) \\
\mathop {PR}\limits^ \to = (\hat i( - 1 - 2) + \hat j(1 - 2) + \hat k(2 - 1)) \\
\end{gathered} $
Now we will be simplifying them further,
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i - \hat j + 2\hat k) \\
\mathop {PR}\limits^ \to = ( - 2\hat i - \hat j + \hat k) \\
\end{gathered} $
Now we will be calculating the cross product of:
$\begin{gathered}
\mathop {PQ}\limits^ \to = (\hat i - \hat j + 2\hat k) \\
\mathop {PR}\limits^ \to = ( - 2\hat i - \hat j + \hat k) \\
\end{gathered} $,
So, the cross product: $b = \mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to $
$\mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to = \left| {\left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 1}&2 \\
{ - 2}&{ - 1}&1
\end{array}} \right)} \right|$,
Now we will be finding the cross product by solving the above determinant:$\mathop {PQ}\limits^ \to \times \mathop {PR}\limits^ \to = \hat i( - 1 + 2) - \hat j(1 + 4) + \hat k( - 1 - 2)$,
The cross product comes out to be: $\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to = \hat i - 5\hat j - 3\hat k$,
Now as we want to calculate the angle between OPQ and PQR,
So, we will be using the formula:$\cos \theta = \left( {\dfrac{{a.b}}{{\left| a \right|.\left| b \right|}}} \right)$,
In this question, $a = \mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to $ and $b = \mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to $,
So, we will be putting the values of a and b in $\cos \theta = \left( {\dfrac{{a.b}}{{\left| a \right|.\left| b \right|}}} \right)$,
So, the equation becomes: $\cos \theta = \left( {\dfrac{{\left( {\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to } \right).\left( {\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to } \right)}}{{\left| {\mathop {OP}\limits^ \to \times \mathop {OQ}\limits^ \to } \right|.\left| {\mathop {PQ}\limits^ \to \times \mathop {QR}\limits^ \to } \right|}}} \right)$,
Putting the values, we will get: $\cos \theta = \left( {\dfrac{{(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)}}{{\left| {5\hat i - \hat j - 3\hat k} \right|.\left| {\hat i - 5\hat j - 3\hat k} \right|}}} \right)$,
Now we need to calculate the dot product of: $(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)$,
So, the dot product: $5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right) = 5(1) - 1( - 5) - 3( - 3)$,
The dot product comes out to be: $5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right) = 19$,
Now we need to calculate the value of $\left| {5\hat i - \hat j - 3\hat k} \right|$,
So, it will be: $\left| {5\hat i - \hat j - 3\hat k} \right|$=$\sqrt {({5^2}) + ( - {1^2}) + ( - {3^2})} = \sqrt {35} $,
Now we need to calculate the value of $\left| {\hat i - 5\hat j - 3\hat k} \right|$,
So, it will be: $\left| {\hat i - 5\hat j - 3\hat k} \right|$=$\sqrt {({1^2}) + ( - {5^2}) + ( - {3^2})} = \sqrt {35} $
Keeping this value in $\cos \theta = \left( {\dfrac{{(5\hat i - \hat j - 3\hat k).\left( {\hat i - 5\hat j - 3\hat k} \right)}}{{\left| {5\hat i - \hat j - 3\hat k} \right|.\left| {\hat i - 5\hat j - 3\hat k} \right|}}} \right)$,
The angle between OPQ and PQR: $\cos \theta = \left( {\dfrac{{19}}{{\sqrt {35} .\sqrt {35} }}} \right)$
So, the angle comes out to be: $\begin{gathered}
\cos \theta = \left( {\dfrac{{19}}{{35}}} \right) \\
\theta = {\cos ^{ - 1}}\left( {\dfrac{{19}}{{35}}} \right) \\
\end{gathered} $
So, the correct answer is “Option b”.
Note: In this question do remember that during dot product does not include the direction vectors, because it is a scalar product. While finding the cross product of OP and OQ, PQ and PR find the vectors $\mathop {OP}\limits^ \to ,\mathop {OQ}\limits^ \to ,\mathop {PQ}\limits^ \to ,\mathop {PR}\limits^ \to $ first do avoid any kind of mistakes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
