
A student takes his examination in four subjects \[\alpha ,\beta ,\gamma ,\delta \]. He estimates his chance of passing in \[\alpha \] is \[\dfrac{4}{5}\] , \[\beta \] is \[\dfrac{3}{4}\] , in \[\gamma \] is \[\dfrac{5}{6}\] and \[\delta \] is \[\dfrac{2}{3}\] . The probability that he qualifies (passes in at least three subjects) is
A. \[\dfrac{{34}}{{90}}\]
B. \[\dfrac{{61}}{{90}}\]
C. \[\dfrac{{53}}{{90}}\]
D. None of these
Answer
532.5k+ views
Hint: In this word problem mentioned as a student takes four subjects in his examination. And here also estimated his chance of passing in four subjects. So, we need to find the possibilities of passes in at least three subjects. We need the probability formula is \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
Complete step by step solution:
Let as assume, the given possibility of qualifying the examination in four subject, we have
\[
\alpha = \dfrac{4}{5}, \\
\beta = \dfrac{3}{4}, \\
\gamma = \dfrac{5}{6}, \\
\delta = \dfrac{2}{3} \;
\]
By substituting the above values into the probability formula, \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
The probability of impossible event,
\[{\rm P}(\overline \alpha ) = 1 - {\rm P}(\alpha ) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5} = \dfrac{1}{5}\]
\[{\rm P}(\overline \beta ) = 1 - {\rm P}(\beta ) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4} = \dfrac{1}{4}\]
\[{\rm P}(\overline \gamma ) = 1 - {\rm P}(\gamma ) = 1 - \dfrac{5}{6} = \dfrac{{6 - 5}}{6} = \dfrac{1}{6}\]
\[{\rm P}(\overline \delta ) = 1 - {\rm P}(\delta ) = 1 - \dfrac{2}{3} = \dfrac{{3 - 2}}{3} = \dfrac{1}{3}\]
To calculate the different possibilities to qualify are
Possibility of qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta )\]
Possibility of qualify in three subject out of four, \[{\rm P}(\overline \alpha \beta \gamma \delta ),{\rm P}(\alpha \overline \beta \gamma \delta ),{\rm P}(\alpha \beta \overline \gamma \delta ),{\rm P}(\alpha \beta \gamma \overline \delta )\]
The probability of impossible event, we have
\[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\]
By substitute the values in the probability formula, we get
Qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{120}}{{360}} = \dfrac{1}{3}\]
Qualify in three subjects, \[\alpha ,\beta ,\gamma \] , not \[\delta \] , \[{\rm P}(\alpha \beta \gamma \overline \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{1}{3} = \dfrac{{60}}{{360}} = \dfrac{1}{6}\]
Qualify in three subjects, \[\alpha ,\beta ,\delta \] , not \[\gamma \] , \[{\rm P}(\alpha \beta \overline \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{1}{6} \times \dfrac{2}{3} = \dfrac{{24}}{{360}} = \dfrac{1}{{15}}\]
Qualify in three subjects, \[\alpha ,\gamma ,\delta \] , not \[\beta \] , \[{\rm P}(\alpha \overline \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{1}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{40}}{{360}} = \dfrac{1}{9}\]
Qualify in three subjects, \[\beta ,\gamma ,\delta \] ,not \[\alpha \] , \[{\rm P}(\overline \alpha \beta \gamma \delta ) = \dfrac{1}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{30}}{{360}} = \dfrac{1}{{12}}\]
By applying all above value into the probability of impossible event formula,
\[
{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta ) \\
{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{1}{3} + \dfrac{1}{{12}} + \dfrac{1}{9} + \dfrac{1}{{15}} + \dfrac{1}{6} \;
\]
Take LCM on the above equation, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{60 + 12 + 20 + 15 + 30}}{{180}}\]
To simplify, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{137}}{{180}}\]
Therefore, the probability of qualifying at least three subjects is \[\dfrac{{137}}{{180}}\] .
So, The final answer is Option (D) - None of these.
So, the correct answer is “Option D”.
Note: In this problem, To calculate the possibilities of passes in at least three subjects by the probability formula. We need to remember this concept to solve this type of problem. \[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\] Here, we need to solve the probability of impossible events.
Complete step by step solution:
Let as assume, the given possibility of qualifying the examination in four subject, we have
\[
\alpha = \dfrac{4}{5}, \\
\beta = \dfrac{3}{4}, \\
\gamma = \dfrac{5}{6}, \\
\delta = \dfrac{2}{3} \;
\]
By substituting the above values into the probability formula, \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
The probability of impossible event,
\[{\rm P}(\overline \alpha ) = 1 - {\rm P}(\alpha ) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5} = \dfrac{1}{5}\]
\[{\rm P}(\overline \beta ) = 1 - {\rm P}(\beta ) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4} = \dfrac{1}{4}\]
\[{\rm P}(\overline \gamma ) = 1 - {\rm P}(\gamma ) = 1 - \dfrac{5}{6} = \dfrac{{6 - 5}}{6} = \dfrac{1}{6}\]
\[{\rm P}(\overline \delta ) = 1 - {\rm P}(\delta ) = 1 - \dfrac{2}{3} = \dfrac{{3 - 2}}{3} = \dfrac{1}{3}\]
To calculate the different possibilities to qualify are
Possibility of qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta )\]
Possibility of qualify in three subject out of four, \[{\rm P}(\overline \alpha \beta \gamma \delta ),{\rm P}(\alpha \overline \beta \gamma \delta ),{\rm P}(\alpha \beta \overline \gamma \delta ),{\rm P}(\alpha \beta \gamma \overline \delta )\]
The probability of impossible event, we have
\[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\]
By substitute the values in the probability formula, we get
Qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{120}}{{360}} = \dfrac{1}{3}\]
Qualify in three subjects, \[\alpha ,\beta ,\gamma \] , not \[\delta \] , \[{\rm P}(\alpha \beta \gamma \overline \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{1}{3} = \dfrac{{60}}{{360}} = \dfrac{1}{6}\]
Qualify in three subjects, \[\alpha ,\beta ,\delta \] , not \[\gamma \] , \[{\rm P}(\alpha \beta \overline \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{1}{6} \times \dfrac{2}{3} = \dfrac{{24}}{{360}} = \dfrac{1}{{15}}\]
Qualify in three subjects, \[\alpha ,\gamma ,\delta \] , not \[\beta \] , \[{\rm P}(\alpha \overline \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{1}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{40}}{{360}} = \dfrac{1}{9}\]
Qualify in three subjects, \[\beta ,\gamma ,\delta \] ,not \[\alpha \] , \[{\rm P}(\overline \alpha \beta \gamma \delta ) = \dfrac{1}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{30}}{{360}} = \dfrac{1}{{12}}\]
By applying all above value into the probability of impossible event formula,
\[
{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta ) \\
{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{1}{3} + \dfrac{1}{{12}} + \dfrac{1}{9} + \dfrac{1}{{15}} + \dfrac{1}{6} \;
\]
Take LCM on the above equation, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{60 + 12 + 20 + 15 + 30}}{{180}}\]
To simplify, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{137}}{{180}}\]
Therefore, the probability of qualifying at least three subjects is \[\dfrac{{137}}{{180}}\] .
So, The final answer is Option (D) - None of these.
So, the correct answer is “Option D”.
Note: In this problem, To calculate the possibilities of passes in at least three subjects by the probability formula. We need to remember this concept to solve this type of problem. \[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\] Here, we need to solve the probability of impossible events.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

