
A student takes his examination in four subjects \[\alpha ,\beta ,\gamma ,\delta \]. He estimates his chance of passing in \[\alpha \] is \[\dfrac{4}{5}\] , \[\beta \] is \[\dfrac{3}{4}\] , in \[\gamma \] is \[\dfrac{5}{6}\] and \[\delta \] is \[\dfrac{2}{3}\] . The probability that he qualifies (passes in at least three subjects) is
A. \[\dfrac{{34}}{{90}}\]
B. \[\dfrac{{61}}{{90}}\]
C. \[\dfrac{{53}}{{90}}\]
D. None of these
Answer
522k+ views
Hint: In this word problem mentioned as a student takes four subjects in his examination. And here also estimated his chance of passing in four subjects. So, we need to find the possibilities of passes in at least three subjects. We need the probability formula is \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
Complete step by step solution:
Let as assume, the given possibility of qualifying the examination in four subject, we have
\[
\alpha = \dfrac{4}{5}, \\
\beta = \dfrac{3}{4}, \\
\gamma = \dfrac{5}{6}, \\
\delta = \dfrac{2}{3} \;
\]
By substituting the above values into the probability formula, \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
The probability of impossible event,
\[{\rm P}(\overline \alpha ) = 1 - {\rm P}(\alpha ) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5} = \dfrac{1}{5}\]
\[{\rm P}(\overline \beta ) = 1 - {\rm P}(\beta ) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4} = \dfrac{1}{4}\]
\[{\rm P}(\overline \gamma ) = 1 - {\rm P}(\gamma ) = 1 - \dfrac{5}{6} = \dfrac{{6 - 5}}{6} = \dfrac{1}{6}\]
\[{\rm P}(\overline \delta ) = 1 - {\rm P}(\delta ) = 1 - \dfrac{2}{3} = \dfrac{{3 - 2}}{3} = \dfrac{1}{3}\]
To calculate the different possibilities to qualify are
Possibility of qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta )\]
Possibility of qualify in three subject out of four, \[{\rm P}(\overline \alpha \beta \gamma \delta ),{\rm P}(\alpha \overline \beta \gamma \delta ),{\rm P}(\alpha \beta \overline \gamma \delta ),{\rm P}(\alpha \beta \gamma \overline \delta )\]
The probability of impossible event, we have
\[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\]
By substitute the values in the probability formula, we get
Qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{120}}{{360}} = \dfrac{1}{3}\]
Qualify in three subjects, \[\alpha ,\beta ,\gamma \] , not \[\delta \] , \[{\rm P}(\alpha \beta \gamma \overline \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{1}{3} = \dfrac{{60}}{{360}} = \dfrac{1}{6}\]
Qualify in three subjects, \[\alpha ,\beta ,\delta \] , not \[\gamma \] , \[{\rm P}(\alpha \beta \overline \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{1}{6} \times \dfrac{2}{3} = \dfrac{{24}}{{360}} = \dfrac{1}{{15}}\]
Qualify in three subjects, \[\alpha ,\gamma ,\delta \] , not \[\beta \] , \[{\rm P}(\alpha \overline \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{1}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{40}}{{360}} = \dfrac{1}{9}\]
Qualify in three subjects, \[\beta ,\gamma ,\delta \] ,not \[\alpha \] , \[{\rm P}(\overline \alpha \beta \gamma \delta ) = \dfrac{1}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{30}}{{360}} = \dfrac{1}{{12}}\]
By applying all above value into the probability of impossible event formula,
\[
{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta ) \\
{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{1}{3} + \dfrac{1}{{12}} + \dfrac{1}{9} + \dfrac{1}{{15}} + \dfrac{1}{6} \;
\]
Take LCM on the above equation, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{60 + 12 + 20 + 15 + 30}}{{180}}\]
To simplify, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{137}}{{180}}\]
Therefore, the probability of qualifying at least three subjects is \[\dfrac{{137}}{{180}}\] .
So, The final answer is Option (D) - None of these.
So, the correct answer is “Option D”.
Note: In this problem, To calculate the possibilities of passes in at least three subjects by the probability formula. We need to remember this concept to solve this type of problem. \[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\] Here, we need to solve the probability of impossible events.
Complete step by step solution:
Let as assume, the given possibility of qualifying the examination in four subject, we have
\[
\alpha = \dfrac{4}{5}, \\
\beta = \dfrac{3}{4}, \\
\gamma = \dfrac{5}{6}, \\
\delta = \dfrac{2}{3} \;
\]
By substituting the above values into the probability formula, \[{\rm P}(\overline {\rm A} ) = 1 - {\rm P}({\rm A})\]
The probability of impossible event,
\[{\rm P}(\overline \alpha ) = 1 - {\rm P}(\alpha ) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5} = \dfrac{1}{5}\]
\[{\rm P}(\overline \beta ) = 1 - {\rm P}(\beta ) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4} = \dfrac{1}{4}\]
\[{\rm P}(\overline \gamma ) = 1 - {\rm P}(\gamma ) = 1 - \dfrac{5}{6} = \dfrac{{6 - 5}}{6} = \dfrac{1}{6}\]
\[{\rm P}(\overline \delta ) = 1 - {\rm P}(\delta ) = 1 - \dfrac{2}{3} = \dfrac{{3 - 2}}{3} = \dfrac{1}{3}\]
To calculate the different possibilities to qualify are
Possibility of qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta )\]
Possibility of qualify in three subject out of four, \[{\rm P}(\overline \alpha \beta \gamma \delta ),{\rm P}(\alpha \overline \beta \gamma \delta ),{\rm P}(\alpha \beta \overline \gamma \delta ),{\rm P}(\alpha \beta \gamma \overline \delta )\]
The probability of impossible event, we have
\[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\]
By substitute the values in the probability formula, we get
Qualify in all the four subject, \[{\rm P}(\alpha \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{120}}{{360}} = \dfrac{1}{3}\]
Qualify in three subjects, \[\alpha ,\beta ,\gamma \] , not \[\delta \] , \[{\rm P}(\alpha \beta \gamma \overline \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{1}{3} = \dfrac{{60}}{{360}} = \dfrac{1}{6}\]
Qualify in three subjects, \[\alpha ,\beta ,\delta \] , not \[\gamma \] , \[{\rm P}(\alpha \beta \overline \gamma \delta ) = \dfrac{4}{5} \times \dfrac{3}{4} \times \dfrac{1}{6} \times \dfrac{2}{3} = \dfrac{{24}}{{360}} = \dfrac{1}{{15}}\]
Qualify in three subjects, \[\alpha ,\gamma ,\delta \] , not \[\beta \] , \[{\rm P}(\alpha \overline \beta \gamma \delta ) = \dfrac{4}{5} \times \dfrac{1}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{40}}{{360}} = \dfrac{1}{9}\]
Qualify in three subjects, \[\beta ,\gamma ,\delta \] ,not \[\alpha \] , \[{\rm P}(\overline \alpha \beta \gamma \delta ) = \dfrac{1}{5} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \dfrac{2}{3} = \dfrac{{30}}{{360}} = \dfrac{1}{{12}}\]
By applying all above value into the probability of impossible event formula,
\[
{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta ) \\
{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{1}{3} + \dfrac{1}{{12}} + \dfrac{1}{9} + \dfrac{1}{{15}} + \dfrac{1}{6} \;
\]
Take LCM on the above equation, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{60 + 12 + 20 + 15 + 30}}{{180}}\]
To simplify, we get
\[{\rm P}(\alpha \beta \gamma \delta + \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = \dfrac{{137}}{{180}}\]
Therefore, the probability of qualifying at least three subjects is \[\dfrac{{137}}{{180}}\] .
So, The final answer is Option (D) - None of these.
So, the correct answer is “Option D”.
Note: In this problem, To calculate the possibilities of passes in at least three subjects by the probability formula. We need to remember this concept to solve this type of problem. \[{\rm P}(\alpha \beta \gamma \delta \cup \overline \alpha \beta \gamma \delta \cup \alpha \overline \beta \gamma \delta \cup \alpha \beta \overline \gamma \delta \cup \alpha \beta \gamma \overline \delta ) = {\rm P}(\alpha \beta \gamma \delta ) + {\rm P}(\overline \alpha \beta \gamma \delta ) + {\rm P}(\alpha \overline \beta \gamma \delta ) + {\rm P}(\alpha \beta \overline \gamma \delta ) + {\rm P}(\alpha \beta \gamma \overline \delta )\] Here, we need to solve the probability of impossible events.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

