
A steel plate of face area $1c{m^2}$ and thickness $4cm$ is fixed rigidly at the lower surface. A tangential force $F = 10kN$ is applied on the upper surface as shown in the figure. The lateral displacement $x$ of upper surface w.r.t the lower surface is (Modulus of rigidity for steel is $8 \times {10^{11}}N/{m^2}$ ?

Answer
524.1k+ views
Hint: Concept of Modulus rigidity will be used which is the ratio of stress to the longitudinal strain within the elastic limit. Firstly collect the data and apply formula of Modulus of rigidity $(\eta ).$
Given that: Tangential forced (f)$ = 10KN$
$ F = 10KN = 10 \times {10^3} (\because LKN = {10^3}N) $
Thickness of plate $ = L = 4\,cm = 4 \times {10^{ - 2}}m.$
Area of steel plate $ = A = 1\,c{m^2} = {10^{ - 4}}{m^2}$
Modulus of rigidity $ = \eta = 8 \times {10^{11}}N/{m^2}$
Later displacement $ = \Delta L = ?$
Now formula used:
$\eta = \dfrac{{F \times L}}{{A \times \Delta L}}$
Where $\eta = $Modulus of rigidity
F$ = $force on plate
L$ = $thickness of plate
A$ = $area of plate
\[
\eta = \dfrac{{10 \times {{10}^3} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
8 \times {10^{11}} = \dfrac{{{{10}^4} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
\Delta L = \dfrac{{4 \times {{10}^2}}}{{{{10}^{ - 4}} \times 8 \times {{10}^{11}}}} \\
\Delta L = \dfrac{4}{8} \times {10^{ - 5}} = 0.5 \times {10^{ - 5}} = 5 \times 10 \times - 6 \\
\]
So, the correct answer is “Option A”.
Note:
After applying the formula $\eta =\dfrac{F}{A}\dfrac{L}{{\Delta L}}$ and put the value at lateral displacement. Where F/A is the stress applied and there is corresponding strain to it.

Given that: Tangential forced (f)$ = 10KN$
$ F = 10KN = 10 \times {10^3} (\because LKN = {10^3}N) $
Thickness of plate $ = L = 4\,cm = 4 \times {10^{ - 2}}m.$
Area of steel plate $ = A = 1\,c{m^2} = {10^{ - 4}}{m^2}$
Modulus of rigidity $ = \eta = 8 \times {10^{11}}N/{m^2}$
Later displacement $ = \Delta L = ?$
Now formula used:
$\eta = \dfrac{{F \times L}}{{A \times \Delta L}}$
Where $\eta = $Modulus of rigidity
F$ = $force on plate
L$ = $thickness of plate
A$ = $area of plate
\[
\eta = \dfrac{{10 \times {{10}^3} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
8 \times {10^{11}} = \dfrac{{{{10}^4} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
\Delta L = \dfrac{{4 \times {{10}^2}}}{{{{10}^{ - 4}} \times 8 \times {{10}^{11}}}} \\
\Delta L = \dfrac{4}{8} \times {10^{ - 5}} = 0.5 \times {10^{ - 5}} = 5 \times 10 \times - 6 \\
\]
So, the correct answer is “Option A”.
Note:
After applying the formula $\eta =\dfrac{F}{A}\dfrac{L}{{\Delta L}}$ and put the value at lateral displacement. Where F/A is the stress applied and there is corresponding strain to it.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
