
A steel plate of face area $1c{m^2}$ and thickness $4cm$ is fixed rigidly at the lower surface. A tangential force $F = 10kN$ is applied on the upper surface as shown in the figure. The lateral displacement $x$ of upper surface w.r.t the lower surface is (Modulus of rigidity for steel is $8 \times {10^{11}}N/{m^2}$ ?
Answer
576.9k+ views
Hint: Concept of Modulus rigidity will be used which is the ratio of stress to the longitudinal strain within the elastic limit. Firstly collect the data and apply formula of Modulus of rigidity $(\eta ).$
Given that: Tangential forced (f)$ = 10KN$
$ F = 10KN = 10 \times {10^3} (\because LKN = {10^3}N) $
Thickness of plate $ = L = 4\,cm = 4 \times {10^{ - 2}}m.$
Area of steel plate $ = A = 1\,c{m^2} = {10^{ - 4}}{m^2}$
Modulus of rigidity $ = \eta = 8 \times {10^{11}}N/{m^2}$
Later displacement $ = \Delta L = ?$
Now formula used:
$\eta = \dfrac{{F \times L}}{{A \times \Delta L}}$
Where $\eta = $Modulus of rigidity
F$ = $force on plate
L$ = $thickness of plate
A$ = $area of plate
\[
\eta = \dfrac{{10 \times {{10}^3} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
8 \times {10^{11}} = \dfrac{{{{10}^4} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
\Delta L = \dfrac{{4 \times {{10}^2}}}{{{{10}^{ - 4}} \times 8 \times {{10}^{11}}}} \\
\Delta L = \dfrac{4}{8} \times {10^{ - 5}} = 0.5 \times {10^{ - 5}} = 5 \times 10 \times - 6 \\
\]
So, the correct answer is “Option A”.
Note:
After applying the formula $\eta =\dfrac{F}{A}\dfrac{L}{{\Delta L}}$ and put the value at lateral displacement. Where F/A is the stress applied and there is corresponding strain to it.
Given that: Tangential forced (f)$ = 10KN$
$ F = 10KN = 10 \times {10^3} (\because LKN = {10^3}N) $
Thickness of plate $ = L = 4\,cm = 4 \times {10^{ - 2}}m.$
Area of steel plate $ = A = 1\,c{m^2} = {10^{ - 4}}{m^2}$
Modulus of rigidity $ = \eta = 8 \times {10^{11}}N/{m^2}$
Later displacement $ = \Delta L = ?$
Now formula used:
$\eta = \dfrac{{F \times L}}{{A \times \Delta L}}$
Where $\eta = $Modulus of rigidity
F$ = $force on plate
L$ = $thickness of plate
A$ = $area of plate
\[
\eta = \dfrac{{10 \times {{10}^3} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
8 \times {10^{11}} = \dfrac{{{{10}^4} \times 4 \times {{10}^{ - 2}}}}{{{{10}^{ - 4}} \times \Delta L}} \\
\Delta L = \dfrac{{4 \times {{10}^2}}}{{{{10}^{ - 4}} \times 8 \times {{10}^{11}}}} \\
\Delta L = \dfrac{4}{8} \times {10^{ - 5}} = 0.5 \times {10^{ - 5}} = 5 \times 10 \times - 6 \\
\]
So, the correct answer is “Option A”.
Note:
After applying the formula $\eta =\dfrac{F}{A}\dfrac{L}{{\Delta L}}$ and put the value at lateral displacement. Where F/A is the stress applied and there is corresponding strain to it.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

