
A speaks the truth 75% of the cases and B in 80% of the cases. What is the probability that their statements about an incident do not match?
Answer
556.2k+ views
Hint: To solve this question, we will use the concept of mutually exclusive events. In general, two events A and B are said to be mutually exclusive events if the occurrence of one of them excludes the occurrence of the other event, i.e. if they cannot occur simultaneously.
Complete step-by-step answer:
Given that,
A speaks the truth 75% of the time.
So, the probability of A speaks the truth will be,
$ \Rightarrow P\left( A \right) = \dfrac{{75}}{{100}} = \dfrac{3}{4}$
B speaks truth 80% of the cases,
So, the probability of B speaks the truth will be,
$ \Rightarrow P\left( B \right) = \dfrac{{80}}{{100}} = \dfrac{4}{5}$
We have to find the probability that their statements about an incident do not match.
As we know that,
The probability of event ‘not A’ is given by,
$ \Rightarrow P\left( {notA} \right) = P\left( {A'} \right) = 1 - P\left( A \right)$
So, the probability that A does not speaks the truth will be,
$ \Rightarrow P\left( {A'} \right) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4}$
$ \Rightarrow P\left( {A'} \right) = \dfrac{1}{4}$
Similarly,
The probability that B does not speaks the truth will be,
$ \Rightarrow P\left( {B'} \right) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5}$
$ \Rightarrow P\left( {B'} \right) = \dfrac{1}{5}$
Let E be the event their statements about an incident do not match.
There will be two conditions when their statements do not match.
Condition 1: When A speaks truth but B don’t.
Condition 2: When B speaks truth but A don’t.
So,
The probability of event E will be given as,
$ \Rightarrow P\left( E \right) = P\left( A \right)P\left( {B'} \right) + P\left( B \right)P\left( {A'} \right)$
Putting all the values, we will get
$ \Rightarrow P\left( E \right) = \left( {\dfrac{3}{4}} \right)\left( {\dfrac{1}{5}} \right) + \left( {\dfrac{4}{5}} \right)\left( {\dfrac{1}{4}} \right)$
\[ \Rightarrow P\left( E \right) = \dfrac{3}{{20}} + \dfrac{1}{5}\]
Taking L.C.M as 20,
\[ \Rightarrow P\left( E \right) = \dfrac{{3 + 4}}{{20}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{7}{{20}}\]
Hence, the probability that their statements about an incident do not match is \[\dfrac{7}{{20}}\]
Note: Whenever we ask such types of questions, we have to remember some basic concepts of probability. First, we will collect all the given details, then we will use the concept of probability of event ‘not A’. Through this, we will find the other required probabilities. After that, we will make the event according to the question and by putting the values in that event, we will get the required answer.
Complete step-by-step answer:
Given that,
A speaks the truth 75% of the time.
So, the probability of A speaks the truth will be,
$ \Rightarrow P\left( A \right) = \dfrac{{75}}{{100}} = \dfrac{3}{4}$
B speaks truth 80% of the cases,
So, the probability of B speaks the truth will be,
$ \Rightarrow P\left( B \right) = \dfrac{{80}}{{100}} = \dfrac{4}{5}$
We have to find the probability that their statements about an incident do not match.
As we know that,
The probability of event ‘not A’ is given by,
$ \Rightarrow P\left( {notA} \right) = P\left( {A'} \right) = 1 - P\left( A \right)$
So, the probability that A does not speaks the truth will be,
$ \Rightarrow P\left( {A'} \right) = 1 - \dfrac{3}{4} = \dfrac{{4 - 3}}{4}$
$ \Rightarrow P\left( {A'} \right) = \dfrac{1}{4}$
Similarly,
The probability that B does not speaks the truth will be,
$ \Rightarrow P\left( {B'} \right) = 1 - \dfrac{4}{5} = \dfrac{{5 - 4}}{5}$
$ \Rightarrow P\left( {B'} \right) = \dfrac{1}{5}$
Let E be the event their statements about an incident do not match.
There will be two conditions when their statements do not match.
Condition 1: When A speaks truth but B don’t.
Condition 2: When B speaks truth but A don’t.
So,
The probability of event E will be given as,
$ \Rightarrow P\left( E \right) = P\left( A \right)P\left( {B'} \right) + P\left( B \right)P\left( {A'} \right)$
Putting all the values, we will get
$ \Rightarrow P\left( E \right) = \left( {\dfrac{3}{4}} \right)\left( {\dfrac{1}{5}} \right) + \left( {\dfrac{4}{5}} \right)\left( {\dfrac{1}{4}} \right)$
\[ \Rightarrow P\left( E \right) = \dfrac{3}{{20}} + \dfrac{1}{5}\]
Taking L.C.M as 20,
\[ \Rightarrow P\left( E \right) = \dfrac{{3 + 4}}{{20}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{7}{{20}}\]
Hence, the probability that their statements about an incident do not match is \[\dfrac{7}{{20}}\]
Note: Whenever we ask such types of questions, we have to remember some basic concepts of probability. First, we will collect all the given details, then we will use the concept of probability of event ‘not A’. Through this, we will find the other required probabilities. After that, we will make the event according to the question and by putting the values in that event, we will get the required answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

