
A solution is 0.1M with respect to $A{g^ + },C{a^{2 + }},M{g^{2 + }}$ and $A{l^{3 + }}$ which will precipitate at lowest concentration of \[\left[ {P{O_4}^{3 - }} \right]\] when solution of $N{a_3}P{O_4}$ is added?
A.\[A{g_3}P{O_4}(Ksp = 1 \times {10^{ - 6}})\]
B.\[C{a_3}{(P{O_4})_2}(Ksp = 1 \times {10^{ - 33}})\]
C.\[M{g_3}{(P{O_4})_2}(Ksp = 1 \times {10^{ - 24}})\]
D.\[AlP{O_4}(Ksp = 1 \times {10^{ - 20}})\]
Answer
576.3k+ views
Hint: We will find the concentration of \[\left[ {P{O_4}^{3 - }} \right]\] in each case since the solubility product constant, \[{K_{SP}}\] is given and we will see in which case the lowest concentration of \[\left[ {P{O_4}^{3 - }} \right]\] is needed to precipitate.
Complete step by step answer:
The solubility product constant, \[{K_{SP}}\] is the equilibrium constant for a solid substance dissolving in an aqueous solution and to solve the \[{K_{SP}}\], it is necessary to take the molarities or concentrations of the products and multiply them.
In the first equation,
$A{g_3}P{O_4} \rightleftharpoons 3A{g^ + } + P{O_4}^{3 - }$
To solve the KSP, it is necessary to take the molarities or concentrations of the products and multiply them
\[{K_{SP}} = {[Ag]^{3 + }}{[P{O_4}]^{3 - }} = 1 \times {10^{ - 6}}\]
$\Rightarrow$ ${[P{O_4}]^{3 - }} = \dfrac{{1 \times 10{}^{ - 6}}}{{{{(0.1)}^3}}} = {10^{ - 3}}$
In the second equation,
$C{a_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3C{a^{2 + }}$
\[
{K_{sp}} = {[C{a^{2 + }}]^3} \times {[P{O_4}^{3 - }]^2} = {10^{ - 33}} \\
\Rightarrow [P{O_4}^{3 - }] = {\left( {\dfrac{{{{10}^{ - 33}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{ - 15}} \\
\]
\[
M{g_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3M{g^{2 + }} + 2P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = {[M{g^{2 + }}]^3}{\left[ {2P{O_4}^{3 - }} \right]^2} = {10^{ - 24}} \\
\Rightarrow \left[ {P{O_4}^{3 - }} \right] = {\left( {\dfrac{{{{10}^{ - 24}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{ - \dfrac{{21}}{2}}} \\
\]
In the third equation,
$
M{g_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3M{g^{2 + }} + 2P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = {\left[ {M{g^{2 + }}} \right]^3}{\left[ {2P{O_4}^{3 - }} \right]^2} = {10^{ - 24}} \\
\Rightarrow \left[ {P{O_4}^{3 - }} \right] = {\left( {\dfrac{{{{10}^{ - 24}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{\dfrac{{ - 21}}{2}}} \\
$
In the fourth equation,
$
AlP{O_4} \rightleftharpoons A{l^{3 + }} + P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = [A{l^{3 + }}][P{O_4}^{3 - }] = {10^{ - 20}} \\
\Rightarrow [P{O_4}^{3 - }] = \dfrac{{{{10}^{ - 20}}}}{{0.1}} = {10^{ - 19}} \\
$
Since, the lowest concentration of \[P{O_4}^{3 - }\] is needed for \[AlP{O_4}\] to precipitate. So, \[AlP{O_4}\] will precipitate.
Therefore, the correct answer is option (D).
Note: The reactant is not included in the \[{K_{SP}}\] equation but only products are multiplied. Solids are not included when we calculate the equilibrium constant expressions, because their concentrations do not change the expression. Hence, \[{K_{SP}}\] represents the maximum extent that a solid can be dissolved in the solution.
Complete step by step answer:
The solubility product constant, \[{K_{SP}}\] is the equilibrium constant for a solid substance dissolving in an aqueous solution and to solve the \[{K_{SP}}\], it is necessary to take the molarities or concentrations of the products and multiply them.
In the first equation,
$A{g_3}P{O_4} \rightleftharpoons 3A{g^ + } + P{O_4}^{3 - }$
To solve the KSP, it is necessary to take the molarities or concentrations of the products and multiply them
\[{K_{SP}} = {[Ag]^{3 + }}{[P{O_4}]^{3 - }} = 1 \times {10^{ - 6}}\]
$\Rightarrow$ ${[P{O_4}]^{3 - }} = \dfrac{{1 \times 10{}^{ - 6}}}{{{{(0.1)}^3}}} = {10^{ - 3}}$
In the second equation,
$C{a_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3C{a^{2 + }}$
\[
{K_{sp}} = {[C{a^{2 + }}]^3} \times {[P{O_4}^{3 - }]^2} = {10^{ - 33}} \\
\Rightarrow [P{O_4}^{3 - }] = {\left( {\dfrac{{{{10}^{ - 33}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{ - 15}} \\
\]
\[
M{g_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3M{g^{2 + }} + 2P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = {[M{g^{2 + }}]^3}{\left[ {2P{O_4}^{3 - }} \right]^2} = {10^{ - 24}} \\
\Rightarrow \left[ {P{O_4}^{3 - }} \right] = {\left( {\dfrac{{{{10}^{ - 24}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{ - \dfrac{{21}}{2}}} \\
\]
In the third equation,
$
M{g_3}{\left( {P{O_4}} \right)_2} \rightleftharpoons 3M{g^{2 + }} + 2P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = {\left[ {M{g^{2 + }}} \right]^3}{\left[ {2P{O_4}^{3 - }} \right]^2} = {10^{ - 24}} \\
\Rightarrow \left[ {P{O_4}^{3 - }} \right] = {\left( {\dfrac{{{{10}^{ - 24}}}}{{{{(0.1)}^3}}}} \right)^{\dfrac{1}{2}}} = {10^{\dfrac{{ - 21}}{2}}} \\
$
In the fourth equation,
$
AlP{O_4} \rightleftharpoons A{l^{3 + }} + P{O_4}^{3 - } \\
\Rightarrow {K_{sp}} = [A{l^{3 + }}][P{O_4}^{3 - }] = {10^{ - 20}} \\
\Rightarrow [P{O_4}^{3 - }] = \dfrac{{{{10}^{ - 20}}}}{{0.1}} = {10^{ - 19}} \\
$
Since, the lowest concentration of \[P{O_4}^{3 - }\] is needed for \[AlP{O_4}\] to precipitate. So, \[AlP{O_4}\] will precipitate.
Therefore, the correct answer is option (D).
Note: The reactant is not included in the \[{K_{SP}}\] equation but only products are multiplied. Solids are not included when we calculate the equilibrium constant expressions, because their concentrations do not change the expression. Hence, \[{K_{SP}}\] represents the maximum extent that a solid can be dissolved in the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

