
A solenoid of length 50cm with 20 turns per centimeter and area of cross section \[40\;{\text{c}}{{\text{m}}^2}\]square completely surrounds another coaxial solenoid of the same length, area of the cross section \[25\;{\text{c}}{{\text{m}}^{\text{2}}}\] with \[25\] turns per centimeter calculate the mutual inductance of the system.
(A) \[9.78\;{\text{mH}}\]
(B) \[7.85\;{\text{mH}}\].
(C) \[8.90\;{\text{mH}}\].
(D) \[6.8\;{\text{mH}}\].
Answer
585.6k+ views
Hint: In this question, we need to find the expression for the mutual inductance of the system. We know that the mutual induction depends on the number of turns, area of cross-section, and the length of the conductor then substitute all the values in the expression to calculate the mutual inductance of the system.
Complete step by step answer:
We are given a solenoid of length \[50\;{\text{cm}}\] and the area of cross section of solenoid is \[40\;{\text{c}}{{\text{m}}^2}\] and that is having \[20\] turns per centimeter. An area of similar solenoid is \[25\;{\text{c}}{{\text{m}}^{\text{2}}}\] and that is having the same length with \[25\] turns per centimeter.
Consider all the given values and assume that \[{r_1}\] be the radii of \[{1^{{\text{st}}}}\] solenoid and \[{r_2}\] be the radii of \[{2^{{\text{nd}}}}\] solenoid.
And assuming \[{n_1}\] be the number of turns of \[{1^{{\text{st}}}}\] solenoid and \[{n_2}\] be the number of turns of \[{2^{{\text{nd}}}}\] solenoid and \[{N_{\text{1}}}\] be the total no of turns and \[{1^{{\text{st}}}}\] solenoid \[{N_{\text{2}}}\] be the total no of turns \[{2^{{\text{nd}}}}\] solenoids and each of length \[l\].
The mutual inductance between the two solenoids is the interaction of \[{1^{{\text{st}}}}\] solenoid magnetic field on another solenoid because of this interaction it induces of unit current flowing in the \[{2^{{\text{nd}}}}\] solenoid.
The \[{2^{{\text{nd}}}}\]solenoids carry current \[{I_{\text{2}}}\].So, the current sets up magnetic flux \[{\phi _1}\] through the \[{1^{{\text{st}}}}\] solenoid.
Write the expression for the total flux.
\[{N_1}{\phi _1} = {{\text{M}}_{12}}{I_2}\]
Where, \[{{\text{M}}_{12}}\] is the mutual inductance of the \[{1^{{\text{st}}}}\] solenoid with respect to \[{2^{{\text{nd}}}}\] solenoid.
The total flux linkages with the \[{1^{{\text{st}}}}\] solenoid,
$\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l $
$\Rightarrow {{\text{M}}_{12}} = {{\text{M}}_{21}} $
The total flux of the \[{1^{{\text{st}}}}\] solenoid is equal to the total flux of \[{2^{{\text{nd}}}}\] solenoid.
Converting the values into standard units,
$\Rightarrow {l_1} = {\text{50}}\;{\text{cm}} $
$\Rightarrow {l_1} = {\text{50}}\;{\text{cm}}\left( {\dfrac{{1\;{\text{m}}}}{{{\text{100}}\;{\text{cm}}}}} \right) $
$\Rightarrow {l_1} = {{50 \times 1}}{{\text{0}}^{{\text{ - 2}}}}\;{\text{m}} $
\[{n_{\text{1}}} = {\text{2000}}\;{\text{turns per meter}}\]
\[\Rightarrow {A_{\text{1}}} = {{40 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}\]
\[{n_{\text{2}}} = {\text{2500}}\;{\text{turns per meter}}\]
\[\Rightarrow {A_{\text{2}}} = {\text{2}}{{.5 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}\]
$\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l $
Substituting the corresponding values,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = 4\left( {3.14 \times {{10}^{ - 7}}} \right)\left( {2000} \right) \times \left( {2500} \right)\left( {50 \times {{10}^{ - 2}}} \right)\left( {25 \times {{10}^{ - 4}}} \right) $
On simplification,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = \left( {12.56 \times {{10}^{ - 14}}} \right)\left( {2000} \right)\left( {2500} \right)\left( {50} \right)\left( {25 \times {{10}^{ - 2}}} \right)\left( {{{10}^{ - 4}}} \right) $
On further simplification,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = {\text{7}}{\text{.85}}\;{\text{mH}} $
Therefore, the mutual inductance of the system is \[{\text{7}}{\text{.85}}\;{\text{mH}}\]. So, option (B) is correct.
Note:
We need to be careful about the units of the given variables, first convert all the values into a standard unit that is from centimeter to meter. Do not substitute values without converting the units into the standard units.
Complete step by step answer:
We are given a solenoid of length \[50\;{\text{cm}}\] and the area of cross section of solenoid is \[40\;{\text{c}}{{\text{m}}^2}\] and that is having \[20\] turns per centimeter. An area of similar solenoid is \[25\;{\text{c}}{{\text{m}}^{\text{2}}}\] and that is having the same length with \[25\] turns per centimeter.
Consider all the given values and assume that \[{r_1}\] be the radii of \[{1^{{\text{st}}}}\] solenoid and \[{r_2}\] be the radii of \[{2^{{\text{nd}}}}\] solenoid.
And assuming \[{n_1}\] be the number of turns of \[{1^{{\text{st}}}}\] solenoid and \[{n_2}\] be the number of turns of \[{2^{{\text{nd}}}}\] solenoid and \[{N_{\text{1}}}\] be the total no of turns and \[{1^{{\text{st}}}}\] solenoid \[{N_{\text{2}}}\] be the total no of turns \[{2^{{\text{nd}}}}\] solenoids and each of length \[l\].
The mutual inductance between the two solenoids is the interaction of \[{1^{{\text{st}}}}\] solenoid magnetic field on another solenoid because of this interaction it induces of unit current flowing in the \[{2^{{\text{nd}}}}\] solenoid.
The \[{2^{{\text{nd}}}}\]solenoids carry current \[{I_{\text{2}}}\].So, the current sets up magnetic flux \[{\phi _1}\] through the \[{1^{{\text{st}}}}\] solenoid.
Write the expression for the total flux.
\[{N_1}{\phi _1} = {{\text{M}}_{12}}{I_2}\]
Where, \[{{\text{M}}_{12}}\] is the mutual inductance of the \[{1^{{\text{st}}}}\] solenoid with respect to \[{2^{{\text{nd}}}}\] solenoid.
The total flux linkages with the \[{1^{{\text{st}}}}\] solenoid,
$\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l $
$\Rightarrow {{\text{M}}_{12}} = {{\text{M}}_{21}} $
The total flux of the \[{1^{{\text{st}}}}\] solenoid is equal to the total flux of \[{2^{{\text{nd}}}}\] solenoid.
Converting the values into standard units,
$\Rightarrow {l_1} = {\text{50}}\;{\text{cm}} $
$\Rightarrow {l_1} = {\text{50}}\;{\text{cm}}\left( {\dfrac{{1\;{\text{m}}}}{{{\text{100}}\;{\text{cm}}}}} \right) $
$\Rightarrow {l_1} = {{50 \times 1}}{{\text{0}}^{{\text{ - 2}}}}\;{\text{m}} $
\[{n_{\text{1}}} = {\text{2000}}\;{\text{turns per meter}}\]
\[\Rightarrow {A_{\text{1}}} = {{40 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}\]
\[{n_{\text{2}}} = {\text{2500}}\;{\text{turns per meter}}\]
\[\Rightarrow {A_{\text{2}}} = {\text{2}}{{.5 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}\]
$\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l $
Substituting the corresponding values,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = 4\left( {3.14 \times {{10}^{ - 7}}} \right)\left( {2000} \right) \times \left( {2500} \right)\left( {50 \times {{10}^{ - 2}}} \right)\left( {25 \times {{10}^{ - 4}}} \right) $
On simplification,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = \left( {12.56 \times {{10}^{ - 14}}} \right)\left( {2000} \right)\left( {2500} \right)\left( {50} \right)\left( {25 \times {{10}^{ - 2}}} \right)\left( {{{10}^{ - 4}}} \right) $
On further simplification,
$\Rightarrow {{\text{M}}_{{\text{12}}}} = {\text{7}}{\text{.85}}\;{\text{mH}} $
Therefore, the mutual inductance of the system is \[{\text{7}}{\text{.85}}\;{\text{mH}}\]. So, option (B) is correct.
Note:
We need to be careful about the units of the given variables, first convert all the values into a standard unit that is from centimeter to meter. Do not substitute values without converting the units into the standard units.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

