Answer
Verified
454.5k+ views
Hint-We need to find acceleration when the block of wood is released.
Foe that we need to consider all the forces acting on the Block. The forces acting on the block are force of gravity acting downward, force of buoyancy acting upward
Force is the product of mass and acceleration.
$F = ma$
The net force can be written as
$ma = {F_b} - W$
Where, ${F_b}$ is the force of buoyancy, W is the weight.
Force of buoyancy is given as
${F_b} = V \times \rho \times g$
Where, $V$ is the volume of liquid displaced, $\rho $ is the density of liquid displaced and $g$ is the acceleration due to gravity.
Using these we can find the answer to this question.
Step by step solution:
Given
${\text{depth}} = 5cm$
Relative density $ = 0.5$
Acceleration due to gravity, $g = 10\,m/{s^2}$
Relative density is the ratio of density of the substance to density of water
$\rho = \dfrac{{{\rho _s}}}{{{\rho _w}}}$
Where, ${\rho _s}$ is the density of substance and ${\rho _w}$ is the density of water.
Therefore,
$\dfrac{{{\rho _{wood}}}}{{{\rho _{water}}}} = 0.5$
We need to find acceleration when it is released.
Let us consider all the forces acting on the Block.
The forces acting on the block are force of gravity acting downward, force of buoyancy acting upward
Force is the product of mass and acceleration.
$F = ma$
The net force can be written as
$ma = {F_b} - W$ ……………….(1)
Where, ${F_b}$ is the force of buoyancy, W is the weight.
Force of buoyancy is given as
${F_b} = V \times \rho \times g$
Where, $V$ is the volume of liquid displaced, $\rho $ is the density of liquid displaced and $g$ is the acceleration due to gravity.
Therefore,
${F_b} = V \times {\rho _{water}} \times g$
Weight,
$W = mg = V \times {\rho _{wood}} \times g$
Since, $\rho = \dfrac{m}{V}$
Net force,
$ma = V \times {\rho _{wood}} \times a$
Substituting all these values in equation (1), we get
$V \times {\rho _{wood}} \times a = V \times {\rho _{water}} \times g - V \times {\rho _{wood}} \times g$
$ \Rightarrow a = \dfrac{{{\rho _{water}}}}{{{\rho _{wood}}}} \times g - g = \dfrac{1}{{0.5}}g - g$
$\therefore a = 10\,m/{s^2}$
So, the correct answer is option B.
Note:Remember that the relative density of wood is given. Relative density is the ratio of density of the substance to density of water
$\rho = \dfrac{{{\rho _s}}}{{{\rho _w}}}$
Where, ${\rho _s}$ is the density of substance and ${\rho _w}$ is the density of water.
Hence don’t substitute the given value of relative density for the density of wood. Relative density of wood is the value obtained by dividing density of wood with density of water.
Foe that we need to consider all the forces acting on the Block. The forces acting on the block are force of gravity acting downward, force of buoyancy acting upward
Force is the product of mass and acceleration.
$F = ma$
The net force can be written as
$ma = {F_b} - W$
Where, ${F_b}$ is the force of buoyancy, W is the weight.
Force of buoyancy is given as
${F_b} = V \times \rho \times g$
Where, $V$ is the volume of liquid displaced, $\rho $ is the density of liquid displaced and $g$ is the acceleration due to gravity.
Using these we can find the answer to this question.
Step by step solution:
Given
${\text{depth}} = 5cm$
Relative density $ = 0.5$
Acceleration due to gravity, $g = 10\,m/{s^2}$
Relative density is the ratio of density of the substance to density of water
$\rho = \dfrac{{{\rho _s}}}{{{\rho _w}}}$
Where, ${\rho _s}$ is the density of substance and ${\rho _w}$ is the density of water.
Therefore,
$\dfrac{{{\rho _{wood}}}}{{{\rho _{water}}}} = 0.5$
We need to find acceleration when it is released.
Let us consider all the forces acting on the Block.
The forces acting on the block are force of gravity acting downward, force of buoyancy acting upward
Force is the product of mass and acceleration.
$F = ma$
The net force can be written as
$ma = {F_b} - W$ ……………….(1)
Where, ${F_b}$ is the force of buoyancy, W is the weight.
Force of buoyancy is given as
${F_b} = V \times \rho \times g$
Where, $V$ is the volume of liquid displaced, $\rho $ is the density of liquid displaced and $g$ is the acceleration due to gravity.
Therefore,
${F_b} = V \times {\rho _{water}} \times g$
Weight,
$W = mg = V \times {\rho _{wood}} \times g$
Since, $\rho = \dfrac{m}{V}$
Net force,
$ma = V \times {\rho _{wood}} \times a$
Substituting all these values in equation (1), we get
$V \times {\rho _{wood}} \times a = V \times {\rho _{water}} \times g - V \times {\rho _{wood}} \times g$
$ \Rightarrow a = \dfrac{{{\rho _{water}}}}{{{\rho _{wood}}}} \times g - g = \dfrac{1}{{0.5}}g - g$
$\therefore a = 10\,m/{s^2}$
So, the correct answer is option B.
Note:Remember that the relative density of wood is given. Relative density is the ratio of density of the substance to density of water
$\rho = \dfrac{{{\rho _s}}}{{{\rho _w}}}$
Where, ${\rho _s}$ is the density of substance and ${\rho _w}$ is the density of water.
Hence don’t substitute the given value of relative density for the density of wood. Relative density of wood is the value obtained by dividing density of wood with density of water.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
The milk of which one of these animals has more fat class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE