
A semi-circular arc of radius ‘a’ is charged uniformly and the charge per unit length is $\lambda$. The electric field at the centre of this arc is
a. $\dfrac{\lambda }{{2\pi {\varepsilon _0}a}}$
b. $\dfrac{\lambda }{{2\pi {\varepsilon _0}{a^2}}}$
c. $\dfrac{\lambda }{{4{\pi ^2}{\varepsilon _0}a}}$
d. $\dfrac{{{\lambda ^2}}}{{2\pi {\varepsilon _0}a}}$
Answer
510.6k+ views
Hint: The charge is the property of particles which attracts and repulses with each other when placed in an electrical field. Rate of flow of charges is called current. Electrification is the process of adding charge to the body. Apply the electric field at the center of the arc.
Complete step by step answer:
Electrification is the process of adding charge to the body. The property of the matter that produces and experiences electrical and magnetic fields is called charge.
Voltage is the product of current and resistance. The charge is the property of particles which attract and repulse with each other when placed in an electrical field.
A charged particle exerts force on each other. A $1.6 \times {10^{19}}$ is the charge of a single electron. Electronic circuits use electric charge to do some useful work.
The moving charges produce an electric current. Rate of flow of charges is called current. The SI unit of current is ampere. One ampere equals one coulomb per second.
Charge on the elementary portion $dx = \lambda dx$
Where $\lambda $is the charge density.
Then the electric field is given by
$ \Rightarrow dE = \dfrac{{\lambda dx}}{{4\pi {\varepsilon _0}{a^2}}}$
Here, horizontal electric is cancelled since it is perpendicular.
Hence, the net electric field is equal to the addition of all electrical fields
$ \Rightarrow E = \int {\dfrac{{\lambda dx}}{{4\pi {\varepsilon _0}{a^2}}}} \cos \theta $
Integrating we get, $E = \int\limits_{\frac{{-{\pi}}}{2}}^{\frac{\pi }{2}} {\dfrac{{\lambda \cos \theta d\theta }}{{4\pi {\varepsilon _0}a}}} = \dfrac{\lambda }{{4\pi {\varepsilon _0}a}}\left[ {1 - \left( { - 1} \right)} \right] = \dfrac{\lambda }{{2\pi {\varepsilon _0}a}}$
Hence, the correct answer is option (A).
Note: Fundamental property that attracts or repulses each other when placed in a magnetic field is called charge. When the linear size of a charged body is smaller than the distance, then the size can be ignored and that charge body is called point charge. Charge experiences the field only in the electric field.
Complete step by step answer:
Electrification is the process of adding charge to the body. The property of the matter that produces and experiences electrical and magnetic fields is called charge.
Voltage is the product of current and resistance. The charge is the property of particles which attract and repulse with each other when placed in an electrical field.
A charged particle exerts force on each other. A $1.6 \times {10^{19}}$ is the charge of a single electron. Electronic circuits use electric charge to do some useful work.
The moving charges produce an electric current. Rate of flow of charges is called current. The SI unit of current is ampere. One ampere equals one coulomb per second.
Charge on the elementary portion $dx = \lambda dx$
Where $\lambda $is the charge density.
Then the electric field is given by
$ \Rightarrow dE = \dfrac{{\lambda dx}}{{4\pi {\varepsilon _0}{a^2}}}$
Here, horizontal electric is cancelled since it is perpendicular.
Hence, the net electric field is equal to the addition of all electrical fields
$ \Rightarrow E = \int {\dfrac{{\lambda dx}}{{4\pi {\varepsilon _0}{a^2}}}} \cos \theta $
Integrating we get, $E = \int\limits_{\frac{{-{\pi}}}{2}}^{\frac{\pi }{2}} {\dfrac{{\lambda \cos \theta d\theta }}{{4\pi {\varepsilon _0}a}}} = \dfrac{\lambda }{{4\pi {\varepsilon _0}a}}\left[ {1 - \left( { - 1} \right)} \right] = \dfrac{\lambda }{{2\pi {\varepsilon _0}a}}$
Hence, the correct answer is option (A).
Note: Fundamental property that attracts or repulses each other when placed in a magnetic field is called charge. When the linear size of a charged body is smaller than the distance, then the size can be ignored and that charge body is called point charge. Charge experiences the field only in the electric field.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

