Answer

Verified

441.3k+ views

**Hint:**Here, the semicircle is inscribed in a right angle triangle so that its diameter lies on the hypotenuse which means that the point that intersects the semicircle at two points lies outside the circle. And another line passes through this point which is tangent, then the power of the circle is given as- ${\text{(tangen}}{{\text{t}})^2} = {\text{product of the two points}}$

**Complete step-by-step answer:**Let R be the radius of the semicircle and T be the tangent. Since the point through which the tangent passes and that intersects the semi-circle on two points lies outside the circle then the power of circle is-

$ \Rightarrow $ ${\text{tangen}}{{\text{t}}^2} = {\text{product of the two points}}$ ${{\text{(T)}}^2}{\text{ = }}\left( {15 - {\text{R}}} \right)\left( {15 + {\text{R}}} \right)$=$225 - {{\text{R}}^2}$ --- (i)

Since the triangles are similar triangles, that is, same in shape but not in size so the ratio of corresponding sides of the triangles will be equal. Then we can write the ratio of radius to hypotenuse of right angled triangle is-

$ \Rightarrow \dfrac{{\text{T}}}{{\text{R}}} = \dfrac{{15}}{{20}} = \dfrac{3}{4}$=k (let) --- (ii)

On solving the equation eq. (ii)

$ \Rightarrow {\text{T = 3k and R = 4k}}$

On putting these values in eq. (i), we get-

$ \Rightarrow {\left( {3{\text{k}}} \right)^2} = 225 - {\left( {4{\text{k}}} \right)^2}$ $ \Rightarrow 9{{\text{k}}^2}{\text{ = 225 - 16}}{{\text{k}}^2}$

On separating the coefficients of k, we get-

$

\Rightarrow \left( {16 + 9} \right){{\text{k}}^2} = 225 \Rightarrow 25{{\text{k}}^2} = 225 \\

\Rightarrow {{\text{k}}^2} = \dfrac{{225}}{{25}} = 9 \\

$

$ \Rightarrow {\text{k}} = 3$

On putting the value of k , we get,${\text{R = 12 and T = 9}}$

To find arc length, we use the given formula-

Arc length of quarter circle=$\dfrac{{\pi {\text{R}}}}{2}$

On putting the values, we get the arc length.

Arc length=$\dfrac{{\pi \times 12}}{2} = 6\pi $

**Hence the arc length is $6\pi $ .**

**Note:**The arc length of full circle is given by $\dfrac{{\pi {\text{R}}}}{4}$ as ${90^ \circ }$ is one quarter of a circle and 360 is full quarter. So to find the arc we change the formula to $\dfrac{{\pi {\text{R}}}}{2}$ .

Here, we have taken radius as hypotenuse because the radius of the circle lies on the hypotenuse.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

10 examples of evaporation in daily life with explanations

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE