
A relation R is defined on the set Z of integers as follows: \[R=\left( x,y \right)\in R:{{x}^{2}}+{{y}^{2}}=25\]. Express \[R\] and \[{{R}^{-1}}\] as the set of ordered pairs and hence find their respective domains
a) 0
b) Domain of $R=\{0,\pm 3\}$ = Domain of ${{R}^{-1}}$
c) Domain of $R=\{0,\pm 3,\pm 4\}$ = Domain of ${{R}^{-1}}$
d) Domain of $R=\{0,\pm 3,\pm 4,\pm 5\}$ = Domain of ${{R}^{-1}}$
Answer
582.6k+ views
Hint: In this question, we are given a relation with a given property of the elements x and y. Therefore, we should try to find the values of x and y for which the given relation is satisfied. Then, we can form these ordered pairs and the values of x in these ordered pairs should be the domain of R. Also, as ${{R}^{-1}}$ is the inverse relation, the ordered pairs for ${{R}^{-1}}$ can be found by just interchanging the values of x and y in the ordered pairs for $R$ and thus the first elements of these ordered pairs will give us the domain of ${{R}^{-1}}$ .
Complete step by step solution:
The given relation is
\[\begin{align}
& R=\left( x,y \right)\in R:{{x}^{2}}+{{y}^{2}}=25 \\
& \Rightarrow y=\pm \sqrt{25-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}..............................(1.1) \\
\end{align}\] .
Also, as the relation is given to be on the set of integers, we should find integer values of x and y such that equation (1.1) is satisfied………………………………..(1.2)
We know from (1.2) that as y is an integer, it should be real. Thus, the value inside the square root in equation (1.1) should be positive. Therefore,
$\begin{align}
& {{5}^{2}}-{{x}^{2}}\ge 0 \\
& \Rightarrow {{x}^{2}}\le {{5}^{2}}\Rightarrow \left| x \right|\le \left| 5 \right| \\
& \Rightarrow \left| x \right|\le 5............................(1.3) \\
\end{align}$
Therefore, from equation (1.2) and (1.3), we find that the values of y can be -5, -4, -3, -2, -1, 0, 1, 2, 3, 4 and 5. Also, we can find the corresponding values of y as
If x=-5, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -5 \right)}^{2}}}=\pm \sqrt{25-25}=0$
If x=-4, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -4 \right)}^{2}}}=\pm \sqrt{25-16}=\pm \sqrt{9}=\pm 3\]
If x=-3, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -3 \right)}^{2}}}=\pm \sqrt{25-9}=\pm \sqrt{16}=\pm 4$
If x=-2, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -2 \right)}^{2}}}=\pm \sqrt{25-4}=\pm \sqrt{21}=\pm 4.5825$
If x=-1, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -1 \right)}^{2}}}=\pm \sqrt{25-1}=\pm \sqrt{24}=\pm 4.89$
If x=0, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{0}^{2}}}=\pm \sqrt{25}=\pm 5$
If x=1, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 1 \right)}^{2}}}=\pm \sqrt{25-1}=\pm \sqrt{24}=\pm 4.89$
If x=2, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 2 \right)}^{2}}}=\pm \sqrt{25-4}=\pm \sqrt{21}=\pm 4.5825\]
If x=3, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 3 \right)}^{2}}}=\pm \sqrt{25-9}=\pm \sqrt{16}=\pm 4$
If x=4, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 4 \right)}^{2}}}=\pm \sqrt{25-16}=\pm \sqrt{9}=\pm 3\]
If x=5, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 5 \right)}^{2}}}=\pm \sqrt{25-25}=0\] …………………………………………….(1.4)
Thus, the values of x for which x and y are integers and satisfy the condition are x=-5,-4,-3, 0, 3, 4, 5. Thus R can be represented in terms of ordered pairs as $\left\{ \left( -5,0 \right),\left( -4,\pm 3 \right),\left( -3,\pm 4 \right),\left( 0,\pm 5 \right),\left( 3,\pm 4 \right),\left( 4,\pm 3 \right),\left( 5,0 \right) \right\}$ domain of R should be the set of the first elements of these ordered pairs=$\left\{ 0,\pm 3,\pm 4,\pm 5 \right\}$ ……………………(1.5)
Similarly, to find the domain of the inverse relation, we can rewrite equation (1.1) to find the value of x from y as
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=25 \\
& \Rightarrow x=\pm \sqrt{25-{{y}^{2}}}=\pm \sqrt{{{5}^{2}}-{{y}^{2}}}..............................(1.6) \\
\end{align}\]
Now, as this exactly the same formula as (1.1) with x and y interchanged, we can follow the same procedures and thus obtain the same domain so the correct answer should be
Domain of $R=\{0,\pm 3,\pm 4,\pm 5\}$ = Domain of ${{R}^{-1}}$
Which matches option (d) given in the question.
Note: We should be careful to include the $\pm $ sign in equations (1.1) because the given relation is quadratic and hence for a given value of x, there should be two values of y satisfying the given relation. Similarly, while finding the values of y in equation (1.4), we should be careful to include both the positive and negative values to find the ordered pairs satisfying the given relation.
Complete step by step solution:
The given relation is
\[\begin{align}
& R=\left( x,y \right)\in R:{{x}^{2}}+{{y}^{2}}=25 \\
& \Rightarrow y=\pm \sqrt{25-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}..............................(1.1) \\
\end{align}\] .
Also, as the relation is given to be on the set of integers, we should find integer values of x and y such that equation (1.1) is satisfied………………………………..(1.2)
We know from (1.2) that as y is an integer, it should be real. Thus, the value inside the square root in equation (1.1) should be positive. Therefore,
$\begin{align}
& {{5}^{2}}-{{x}^{2}}\ge 0 \\
& \Rightarrow {{x}^{2}}\le {{5}^{2}}\Rightarrow \left| x \right|\le \left| 5 \right| \\
& \Rightarrow \left| x \right|\le 5............................(1.3) \\
\end{align}$
Therefore, from equation (1.2) and (1.3), we find that the values of y can be -5, -4, -3, -2, -1, 0, 1, 2, 3, 4 and 5. Also, we can find the corresponding values of y as
If x=-5, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -5 \right)}^{2}}}=\pm \sqrt{25-25}=0$
If x=-4, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -4 \right)}^{2}}}=\pm \sqrt{25-16}=\pm \sqrt{9}=\pm 3\]
If x=-3, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -3 \right)}^{2}}}=\pm \sqrt{25-9}=\pm \sqrt{16}=\pm 4$
If x=-2, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -2 \right)}^{2}}}=\pm \sqrt{25-4}=\pm \sqrt{21}=\pm 4.5825$
If x=-1, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( -1 \right)}^{2}}}=\pm \sqrt{25-1}=\pm \sqrt{24}=\pm 4.89$
If x=0, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{0}^{2}}}=\pm \sqrt{25}=\pm 5$
If x=1, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 1 \right)}^{2}}}=\pm \sqrt{25-1}=\pm \sqrt{24}=\pm 4.89$
If x=2, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 2 \right)}^{2}}}=\pm \sqrt{25-4}=\pm \sqrt{21}=\pm 4.5825\]
If x=3, $y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 3 \right)}^{2}}}=\pm \sqrt{25-9}=\pm \sqrt{16}=\pm 4$
If x=4, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 4 \right)}^{2}}}=\pm \sqrt{25-16}=\pm \sqrt{9}=\pm 3\]
If x=5, \[y=\pm \sqrt{{{5}^{2}}-{{x}^{2}}}=\pm \sqrt{{{5}^{2}}-{{\left( 5 \right)}^{2}}}=\pm \sqrt{25-25}=0\] …………………………………………….(1.4)
Thus, the values of x for which x and y are integers and satisfy the condition are x=-5,-4,-3, 0, 3, 4, 5. Thus R can be represented in terms of ordered pairs as $\left\{ \left( -5,0 \right),\left( -4,\pm 3 \right),\left( -3,\pm 4 \right),\left( 0,\pm 5 \right),\left( 3,\pm 4 \right),\left( 4,\pm 3 \right),\left( 5,0 \right) \right\}$ domain of R should be the set of the first elements of these ordered pairs=$\left\{ 0,\pm 3,\pm 4,\pm 5 \right\}$ ……………………(1.5)
Similarly, to find the domain of the inverse relation, we can rewrite equation (1.1) to find the value of x from y as
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=25 \\
& \Rightarrow x=\pm \sqrt{25-{{y}^{2}}}=\pm \sqrt{{{5}^{2}}-{{y}^{2}}}..............................(1.6) \\
\end{align}\]
Now, as this exactly the same formula as (1.1) with x and y interchanged, we can follow the same procedures and thus obtain the same domain so the correct answer should be
Domain of $R=\{0,\pm 3,\pm 4,\pm 5\}$ = Domain of ${{R}^{-1}}$
Which matches option (d) given in the question.
Note: We should be careful to include the $\pm $ sign in equations (1.1) because the given relation is quadratic and hence for a given value of x, there should be two values of y satisfying the given relation. Similarly, while finding the values of y in equation (1.4), we should be careful to include both the positive and negative values to find the ordered pairs satisfying the given relation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

