
A real valued function \[f\left( x \right)\] satisfies the functional equation \[f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)\] where \[a\] is a given constant and \[f\left( 0 \right) = 1,f\left( {2a - x} \right)\] is equal to
A. \[f\left( { - x} \right)\]
B. \[f\left( a \right) + f\left( {a - x} \right)\]
C. \[f\left( x \right)\]
D. \[ - f\left( x \right)\]
Answer
582.6k+ views
Hint: First of all, substitute \[x = y = 0\] so that we can use the value of \[f\left( 0 \right) = 1\] to simplify the given function and to get the value of \[f\left( a \right)\]. Then use the value of \[f\left( {x - y} \right)\] to simplify and get the solution of \[f\left( {2a - x} \right)\]. So, use this concept to reach the solution of the given problem.
Complete step by step solution:
Given \[f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)......................................................\left( 1 \right)\]
Also, given that \[f\left( 0 \right) = 1\]
Substituting \[x = y = 0\] in equation \[\left( 1 \right)\], we have
\[
\Rightarrow f\left( {0 - 0} \right) = f\left( 0 \right)f\left( 0 \right) - f\left( {a - 0} \right)f\left( {a + 0} \right) \\
\Rightarrow f\left( 0 \right) = f\left( 0 \right)f\left( 0 \right) - f\left( a \right)f\left( a \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\
\Rightarrow 1 = 1 \times 1 - {\left( {f\left( a \right)} \right)^2} \\
\Rightarrow 1 = 1 - {\left( {f\left( a \right)} \right)^2} \\
\Rightarrow {\left( {f\left( a \right)} \right)^2} = 1 - 1 = 0 \\
\therefore f\left( a \right) = 0 \\
\]
Now, consider
\[
\Rightarrow f\left( {2a - x} \right) = f\left( {a - \left( {x - a} \right)} \right) \\
\Rightarrow f\left( {2a - x} \right) = f\left( a \right)f\left( {x - a} \right) - f\left( {a - a} \right)f\left( {a + x - a} \right){\text{ }}\left[ {{\text{from equation }}\left( 1 \right)} \right] \\
\Rightarrow f\left( {2a - x} \right) = (0)f\left( {x - a} \right) - f\left( 0 \right)f\left( {a + x - a} \right){\text{ }}\left[ {f\left( a \right) = 0} \right] \\
\Rightarrow f\left( {2a - x} \right) = 0 - 1 \times f\left( x \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\
\therefore f\left( {2a - x} \right) = - f\left( x \right) \\
\]
Thus, the correct option is D. \[ - f\left( x \right)\]
Note: In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Complete step by step solution:
Given \[f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)......................................................\left( 1 \right)\]
Also, given that \[f\left( 0 \right) = 1\]
Substituting \[x = y = 0\] in equation \[\left( 1 \right)\], we have
\[
\Rightarrow f\left( {0 - 0} \right) = f\left( 0 \right)f\left( 0 \right) - f\left( {a - 0} \right)f\left( {a + 0} \right) \\
\Rightarrow f\left( 0 \right) = f\left( 0 \right)f\left( 0 \right) - f\left( a \right)f\left( a \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\
\Rightarrow 1 = 1 \times 1 - {\left( {f\left( a \right)} \right)^2} \\
\Rightarrow 1 = 1 - {\left( {f\left( a \right)} \right)^2} \\
\Rightarrow {\left( {f\left( a \right)} \right)^2} = 1 - 1 = 0 \\
\therefore f\left( a \right) = 0 \\
\]
Now, consider
\[
\Rightarrow f\left( {2a - x} \right) = f\left( {a - \left( {x - a} \right)} \right) \\
\Rightarrow f\left( {2a - x} \right) = f\left( a \right)f\left( {x - a} \right) - f\left( {a - a} \right)f\left( {a + x - a} \right){\text{ }}\left[ {{\text{from equation }}\left( 1 \right)} \right] \\
\Rightarrow f\left( {2a - x} \right) = (0)f\left( {x - a} \right) - f\left( 0 \right)f\left( {a + x - a} \right){\text{ }}\left[ {f\left( a \right) = 0} \right] \\
\Rightarrow f\left( {2a - x} \right) = 0 - 1 \times f\left( x \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\
\therefore f\left( {2a - x} \right) = - f\left( x \right) \\
\]
Thus, the correct option is D. \[ - f\left( x \right)\]
Note: In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

