
A radioactive sample decays in two modes. In one mode its half life is ${t_1}$ and in the other mode its half life is ${t_2}$. Find the overall half life
(A) ${t_1} + {t_2}$
(B) $\dfrac{{{t_1} + {t_2}}}{2}$
(C) $\dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}$
(D) $\dfrac{{{t_1}{t_2}}}{{{t_1} - {t_2}}}$
Answer
585.3k+ views
Hint: Half life is defined as the number of atoms reduced to half of its present value.
${t_{^{\dfrac{1}{2}}}} = \dfrac{{\log {\,_e}\,2}}{\lambda }$
Complete step by step answer:
${\lambda _1} = \dfrac{{{{\log }_e}2}}{{{t_1}}}$ …………. (i)
${\lambda _2} = \dfrac{{{{\log }_e}2}}{{{t_2}}}$ ………… (ii)
Where ${t_1}$ and ${t_2}$ are their respective half life and ${\lambda _1}$ and ${\lambda _2}$ are decay constants.
So the decay rate of quantity $N$ is given by
$ - \dfrac{{dN}}{{dt}} = N{\lambda _1} + N{\lambda _2}$
$ \implies \dfrac{{dN}}{N} = - ({\lambda _1} + {\lambda _2})dt$ …………. (iii)
Integrate equation (iii)
$\int_{{N_o}}^N {\dfrac{{dN}}{N}} = - \int_o^t {({\lambda _1} + {\lambda _2})\,dt} $
$ \implies \left| {{{\log }_e}N} \right|_{{N_o}}^N = - ({\lambda _1} + {\lambda _2})[t]_o^t$
$ \implies {\log _e}N - {\log _e}{N_o} = - ({\lambda _1} + {\lambda _2})t$
$ \implies {\log _e}\dfrac{N}{{{N_o}}} = - \left( {{\lambda _1} + {\lambda _2}} \right)t$
Take antilog on both sided
$\dfrac{N}{{{N_o}}} = {e^{ - ({\lambda _1} + {\lambda _2})t}}$
$ \implies N = {N_o}{e^{ - ({\lambda _1} + {\lambda _2})t}}$ …………. (iv)
Use equation (i) and (ii) in (iv)
$N = {N_o}{e^ - }^{\left[ {\dfrac{{{{\log }_e}2}}{{{t_1}}} + \dfrac{{{{\log }_e}2}}{{{t_2}}}} \right]t}$
$ \implies {N_o}{e^{ - \left[ {\dfrac{{{t_1} + {t_2}}}{{{t_1}{t_2}}}} \right]\,\log {\,_e}2\,\,t}}$ ……………. (v)
$ \implies N = {N_o}{e^{ - \lambda t}}$ …………… (vi)
Compare equation (v) and (vi)
$\lambda = \dfrac{{{{\log }_e}2}}{{\dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}}} = \dfrac{{{{\log }_e}\,2}}{{{t_3}}}$
Hence ${t_3}$ is effective half life
$ \therefore {t_3} = \dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}$
So, the correct answer is “Option C”.
Note:
Radioactive decay reduces the number of radioactive nuclei over time. In one half-life, the number decreases to half of its original value. Half of what remains decay in the next half-life, and half of those in the next, and so on. This is an exponential decay process and spontaneous.
${t_{^{\dfrac{1}{2}}}} = \dfrac{{\log {\,_e}\,2}}{\lambda }$
Complete step by step answer:
${\lambda _1} = \dfrac{{{{\log }_e}2}}{{{t_1}}}$ …………. (i)
${\lambda _2} = \dfrac{{{{\log }_e}2}}{{{t_2}}}$ ………… (ii)
Where ${t_1}$ and ${t_2}$ are their respective half life and ${\lambda _1}$ and ${\lambda _2}$ are decay constants.
So the decay rate of quantity $N$ is given by
$ - \dfrac{{dN}}{{dt}} = N{\lambda _1} + N{\lambda _2}$
$ \implies \dfrac{{dN}}{N} = - ({\lambda _1} + {\lambda _2})dt$ …………. (iii)
Integrate equation (iii)
$\int_{{N_o}}^N {\dfrac{{dN}}{N}} = - \int_o^t {({\lambda _1} + {\lambda _2})\,dt} $
$ \implies \left| {{{\log }_e}N} \right|_{{N_o}}^N = - ({\lambda _1} + {\lambda _2})[t]_o^t$
$ \implies {\log _e}N - {\log _e}{N_o} = - ({\lambda _1} + {\lambda _2})t$
$ \implies {\log _e}\dfrac{N}{{{N_o}}} = - \left( {{\lambda _1} + {\lambda _2}} \right)t$
Take antilog on both sided
$\dfrac{N}{{{N_o}}} = {e^{ - ({\lambda _1} + {\lambda _2})t}}$
$ \implies N = {N_o}{e^{ - ({\lambda _1} + {\lambda _2})t}}$ …………. (iv)
Use equation (i) and (ii) in (iv)
$N = {N_o}{e^ - }^{\left[ {\dfrac{{{{\log }_e}2}}{{{t_1}}} + \dfrac{{{{\log }_e}2}}{{{t_2}}}} \right]t}$
$ \implies {N_o}{e^{ - \left[ {\dfrac{{{t_1} + {t_2}}}{{{t_1}{t_2}}}} \right]\,\log {\,_e}2\,\,t}}$ ……………. (v)
$ \implies N = {N_o}{e^{ - \lambda t}}$ …………… (vi)
Compare equation (v) and (vi)
$\lambda = \dfrac{{{{\log }_e}2}}{{\dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}}} = \dfrac{{{{\log }_e}\,2}}{{{t_3}}}$
Hence ${t_3}$ is effective half life
$ \therefore {t_3} = \dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}$
So, the correct answer is “Option C”.
Note:
Radioactive decay reduces the number of radioactive nuclei over time. In one half-life, the number decreases to half of its original value. Half of what remains decay in the next half-life, and half of those in the next, and so on. This is an exponential decay process and spontaneous.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

