
A quantity x is given by $ \text{ }\!\!\varepsilon\!\!\text{ ,L}\dfrac{\vartriangle \text{V}}{\vartriangle \text{t}} $ where $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{q}}} $ is the permittivity of free space, L is a length, $ \vartriangle \text{V} $ is a potential difference and $ \vartriangle \text{t} $ is a time interval. The dimensional formula for X is the same as that of
(A) Resistance
(B) Charge
(C) Voltage
(D) Current
Answer
564.6k+ views
Hint: We know that the force acting on the two charges separated by distance ‘r’
$ \begin{align}
& \text{F=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ }{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}{{\text{r}}^{\text{2}}}} \\
& \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ F }{{\text{r}}^{\text{2}}}} \\
\end{align} $
Dimensional formula for $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{\text{ }\!\!\alpha\!\!\text{ }}}{{\text{A}}^{\text{2}}} \right] $
Electric potential is given by
$ \text{V=}\dfrac{\text{work}}{\text{charge}} $
Dimensional formula for $ \text{V=}\left[ {{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{-\text{3}}}{{\text{A}}^{-\text{1}}} \right] $.
Complete step by step solution
We know that $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}} $ =frequently of free space and its dimensional formula is given by $ \left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right] $
L= length having dimensional formula=[L]
$ \vartriangle \text{V} $ =potential difference having dimensions formula $ =\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{-3}}{{\text{I}}^{-1}} \right] $
$ \vartriangle \text{T} $ =time internal having dimensional formula $ =\left[ {{\text{T}}^{1}} \right] $
Formula for X is $ \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{ L }\vartriangle \text{V/}\vartriangle \text{t} $
Therefore, dimensional formula for ‘X’ is
$ =\dfrac{\left[ {{\text{M}}^{-\text{1}}}{{\text{L}}^{-\text{3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]\text{ }\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}}\text{ }{{\text{T}}^{-3}}\text{ }{{\text{I}}^{-1}} \right]}{\left[ \text{T} \right]} $
$ \begin{align}
& =\dfrac{\left[ {{\text{T}}^{4}}\text{ }{{\text{I}}^{2}} \right]\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}} \right]}{\left[ \text{M}{{\text{L}}^{3}}\text{ }{{\text{T}}^{3}}\text{ I T} \right]} \\
& =\left[ \text{I} \right] \\
\end{align} $
And, dimensional formula for $ \text{Q}=\left[ \text{I} \right] $
$ \therefore $ Quantities ‘X’ have the same dimensional formula as in charge.
$ \therefore $ Option (D) is correct.
Note
While doing finding the dimensional formula for any quantity the formula for that quantity should be clear because from the formula we can make a dimensional formula. We can use dimensional analysis to convert the physical quantity from one system to another to check the correctness of a physical relation, and to obtain relationships among various physical quantities involved.
$ \begin{align}
& \text{F=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ }{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}{{\text{r}}^{\text{2}}}} \\
& \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ F }{{\text{r}}^{\text{2}}}} \\
\end{align} $
Dimensional formula for $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{\text{ }\!\!\alpha\!\!\text{ }}}{{\text{A}}^{\text{2}}} \right] $
Electric potential is given by
$ \text{V=}\dfrac{\text{work}}{\text{charge}} $
Dimensional formula for $ \text{V=}\left[ {{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{-\text{3}}}{{\text{A}}^{-\text{1}}} \right] $.
Complete step by step solution
We know that $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}} $ =frequently of free space and its dimensional formula is given by $ \left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right] $
L= length having dimensional formula=[L]
$ \vartriangle \text{V} $ =potential difference having dimensions formula $ =\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{-3}}{{\text{I}}^{-1}} \right] $
$ \vartriangle \text{T} $ =time internal having dimensional formula $ =\left[ {{\text{T}}^{1}} \right] $
Formula for X is $ \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{ L }\vartriangle \text{V/}\vartriangle \text{t} $
Therefore, dimensional formula for ‘X’ is
$ =\dfrac{\left[ {{\text{M}}^{-\text{1}}}{{\text{L}}^{-\text{3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]\text{ }\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}}\text{ }{{\text{T}}^{-3}}\text{ }{{\text{I}}^{-1}} \right]}{\left[ \text{T} \right]} $
$ \begin{align}
& =\dfrac{\left[ {{\text{T}}^{4}}\text{ }{{\text{I}}^{2}} \right]\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}} \right]}{\left[ \text{M}{{\text{L}}^{3}}\text{ }{{\text{T}}^{3}}\text{ I T} \right]} \\
& =\left[ \text{I} \right] \\
\end{align} $
And, dimensional formula for $ \text{Q}=\left[ \text{I} \right] $
$ \therefore $ Quantities ‘X’ have the same dimensional formula as in charge.
$ \therefore $ Option (D) is correct.
Note
While doing finding the dimensional formula for any quantity the formula for that quantity should be clear because from the formula we can make a dimensional formula. We can use dimensional analysis to convert the physical quantity from one system to another to check the correctness of a physical relation, and to obtain relationships among various physical quantities involved.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

