
A quantity x is given by $ \text{ }\!\!\varepsilon\!\!\text{ ,L}\dfrac{\vartriangle \text{V}}{\vartriangle \text{t}} $ where $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{q}}} $ is the permittivity of free space, L is a length, $ \vartriangle \text{V} $ is a potential difference and $ \vartriangle \text{t} $ is a time interval. The dimensional formula for X is the same as that of
(A) Resistance
(B) Charge
(C) Voltage
(D) Current
Answer
550.5k+ views
Hint: We know that the force acting on the two charges separated by distance ‘r’
$ \begin{align}
& \text{F=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ }{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}{{\text{r}}^{\text{2}}}} \\
& \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ F }{{\text{r}}^{\text{2}}}} \\
\end{align} $
Dimensional formula for $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{\text{ }\!\!\alpha\!\!\text{ }}}{{\text{A}}^{\text{2}}} \right] $
Electric potential is given by
$ \text{V=}\dfrac{\text{work}}{\text{charge}} $
Dimensional formula for $ \text{V=}\left[ {{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{-\text{3}}}{{\text{A}}^{-\text{1}}} \right] $.
Complete step by step solution
We know that $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}} $ =frequently of free space and its dimensional formula is given by $ \left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right] $
L= length having dimensional formula=[L]
$ \vartriangle \text{V} $ =potential difference having dimensions formula $ =\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{-3}}{{\text{I}}^{-1}} \right] $
$ \vartriangle \text{T} $ =time internal having dimensional formula $ =\left[ {{\text{T}}^{1}} \right] $
Formula for X is $ \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{ L }\vartriangle \text{V/}\vartriangle \text{t} $
Therefore, dimensional formula for ‘X’ is
$ =\dfrac{\left[ {{\text{M}}^{-\text{1}}}{{\text{L}}^{-\text{3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]\text{ }\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}}\text{ }{{\text{T}}^{-3}}\text{ }{{\text{I}}^{-1}} \right]}{\left[ \text{T} \right]} $
$ \begin{align}
& =\dfrac{\left[ {{\text{T}}^{4}}\text{ }{{\text{I}}^{2}} \right]\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}} \right]}{\left[ \text{M}{{\text{L}}^{3}}\text{ }{{\text{T}}^{3}}\text{ I T} \right]} \\
& =\left[ \text{I} \right] \\
\end{align} $
And, dimensional formula for $ \text{Q}=\left[ \text{I} \right] $
$ \therefore $ Quantities ‘X’ have the same dimensional formula as in charge.
$ \therefore $ Option (D) is correct.
Note
While doing finding the dimensional formula for any quantity the formula for that quantity should be clear because from the formula we can make a dimensional formula. We can use dimensional analysis to convert the physical quantity from one system to another to check the correctness of a physical relation, and to obtain relationships among various physical quantities involved.
$ \begin{align}
& \text{F=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ }{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}{{\text{r}}^{\text{2}}}} \\
& \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\!\!\pi\!\!\text{ F }{{\text{r}}^{\text{2}}}} \\
\end{align} $
Dimensional formula for $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{=}\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{\text{ }\!\!\alpha\!\!\text{ }}}{{\text{A}}^{\text{2}}} \right] $
Electric potential is given by
$ \text{V=}\dfrac{\text{work}}{\text{charge}} $
Dimensional formula for $ \text{V=}\left[ {{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{-\text{3}}}{{\text{A}}^{-\text{1}}} \right] $.
Complete step by step solution
We know that $ {{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}} $ =frequently of free space and its dimensional formula is given by $ \left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right] $
L= length having dimensional formula=[L]
$ \vartriangle \text{V} $ =potential difference having dimensions formula $ =\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{-3}}{{\text{I}}^{-1}} \right] $
$ \vartriangle \text{T} $ =time internal having dimensional formula $ =\left[ {{\text{T}}^{1}} \right] $
Formula for X is $ \text{=}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{0}}}\text{ L }\vartriangle \text{V/}\vartriangle \text{t} $
Therefore, dimensional formula for ‘X’ is
$ =\dfrac{\left[ {{\text{M}}^{-\text{1}}}{{\text{L}}^{-\text{3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]\text{ }\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}}\text{ }{{\text{T}}^{-3}}\text{ }{{\text{I}}^{-1}} \right]}{\left[ \text{T} \right]} $
$ \begin{align}
& =\dfrac{\left[ {{\text{T}}^{4}}\text{ }{{\text{I}}^{2}} \right]\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}} \right]}{\left[ \text{M}{{\text{L}}^{3}}\text{ }{{\text{T}}^{3}}\text{ I T} \right]} \\
& =\left[ \text{I} \right] \\
\end{align} $
And, dimensional formula for $ \text{Q}=\left[ \text{I} \right] $
$ \therefore $ Quantities ‘X’ have the same dimensional formula as in charge.
$ \therefore $ Option (D) is correct.
Note
While doing finding the dimensional formula for any quantity the formula for that quantity should be clear because from the formula we can make a dimensional formula. We can use dimensional analysis to convert the physical quantity from one system to another to check the correctness of a physical relation, and to obtain relationships among various physical quantities involved.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

