
A proton, a deuteron and an $\alpha $ particle accelerated through the same potential difference enter a region of uniform magnetic field, moving at right angles to B. What is the ratio of their kinetic energies?
(A) $2:1:1$
(B) $2:2:1$
(C) $1:2:1$
(D) $1:1:2$
Answer
570.3k+ views
Hint: When a charge particle is enter in a region of uniform magnetic field of potential difference V then the kinetic energy is given by
$K.E. = qV$
Where
q $ = $ charge of particle
V $ = $ potential difference
Complete step by step answer:
We know that the charge of proton ${q_p} = e$
Charge at deuteron ${q_d} = e$
Charge at $\alpha $ particle ${q_\alpha } = 2e$
Given that potential difference at which particles was accelerated is same i.e., V $(let)$
We also know that in this case the expression for kinetic energy of charged particles is
$K.E. = qV$
Hence
K.E. of proton $ = {q_p}V = eV$ …..(1)
K.E. of deuteron $ = {q_d}V = eV$ …..(2)
K.E. of $\alpha $ particle $ = {q_\alpha }V = 2eV$ …..(3)
So, the ratio of their K.E. is
$K{E_p} = K{E_d}:K{E_\alpha } = eV:eV:2eV$
$K{E_p}:K{E_d}:K{E_\alpha } = 1:1:2$
So, the correct answer is “Option D”.
Note:
If potential difference is same for all particles and magnetic field is perpendicular and magnetic field is perpendicular then only electric force is effecting in this condition and kinetic energy is directly proportional to charge of particle. i.e., $K.E.\propto q$
$K.E. = qV$
Where
q $ = $ charge of particle
V $ = $ potential difference
Complete step by step answer:
We know that the charge of proton ${q_p} = e$
Charge at deuteron ${q_d} = e$
Charge at $\alpha $ particle ${q_\alpha } = 2e$
Given that potential difference at which particles was accelerated is same i.e., V $(let)$
We also know that in this case the expression for kinetic energy of charged particles is
$K.E. = qV$
Hence
K.E. of proton $ = {q_p}V = eV$ …..(1)
K.E. of deuteron $ = {q_d}V = eV$ …..(2)
K.E. of $\alpha $ particle $ = {q_\alpha }V = 2eV$ …..(3)
So, the ratio of their K.E. is
$K{E_p} = K{E_d}:K{E_\alpha } = eV:eV:2eV$
$K{E_p}:K{E_d}:K{E_\alpha } = 1:1:2$
So, the correct answer is “Option D”.
Note:
If potential difference is same for all particles and magnetic field is perpendicular and magnetic field is perpendicular then only electric force is effecting in this condition and kinetic energy is directly proportional to charge of particle. i.e., $K.E.\propto q$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

