
A proton, a deuteron and an $\alpha $ particle accelerated through the same potential difference enter a region of uniform magnetic field, moving at right angles to B. What is the ratio of their kinetic energies?
(A) $2:1:1$
(B) $2:2:1$
(C) $1:2:1$
(D) $1:1:2$
Answer
584.4k+ views
Hint: When a charge particle is enter in a region of uniform magnetic field of potential difference V then the kinetic energy is given by
$K.E. = qV$
Where
q $ = $ charge of particle
V $ = $ potential difference
Complete step by step answer:
We know that the charge of proton ${q_p} = e$
Charge at deuteron ${q_d} = e$
Charge at $\alpha $ particle ${q_\alpha } = 2e$
Given that potential difference at which particles was accelerated is same i.e., V $(let)$
We also know that in this case the expression for kinetic energy of charged particles is
$K.E. = qV$
Hence
K.E. of proton $ = {q_p}V = eV$ …..(1)
K.E. of deuteron $ = {q_d}V = eV$ …..(2)
K.E. of $\alpha $ particle $ = {q_\alpha }V = 2eV$ …..(3)
So, the ratio of their K.E. is
$K{E_p} = K{E_d}:K{E_\alpha } = eV:eV:2eV$
$K{E_p}:K{E_d}:K{E_\alpha } = 1:1:2$
So, the correct answer is “Option D”.
Note:
If potential difference is same for all particles and magnetic field is perpendicular and magnetic field is perpendicular then only electric force is effecting in this condition and kinetic energy is directly proportional to charge of particle. i.e., $K.E.\propto q$
$K.E. = qV$
Where
q $ = $ charge of particle
V $ = $ potential difference
Complete step by step answer:
We know that the charge of proton ${q_p} = e$
Charge at deuteron ${q_d} = e$
Charge at $\alpha $ particle ${q_\alpha } = 2e$
Given that potential difference at which particles was accelerated is same i.e., V $(let)$
We also know that in this case the expression for kinetic energy of charged particles is
$K.E. = qV$
Hence
K.E. of proton $ = {q_p}V = eV$ …..(1)
K.E. of deuteron $ = {q_d}V = eV$ …..(2)
K.E. of $\alpha $ particle $ = {q_\alpha }V = 2eV$ …..(3)
So, the ratio of their K.E. is
$K{E_p} = K{E_d}:K{E_\alpha } = eV:eV:2eV$
$K{E_p}:K{E_d}:K{E_\alpha } = 1:1:2$
So, the correct answer is “Option D”.
Note:
If potential difference is same for all particles and magnetic field is perpendicular and magnetic field is perpendicular then only electric force is effecting in this condition and kinetic energy is directly proportional to charge of particle. i.e., $K.E.\propto q$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

