Answer
Verified
425.1k+ views
Hint: In this question we have to find the refractive index of the material of the lens. For this use the formula of focal length, and then use the relation of focal length with radius of curvature and refractive index.
Complete step by step answer:
Given,
When silvered in the plane side the Plano convex lens behaves like a concave mirror of focal length 30 cm.
When silvered on the convex side the Plano convex lens behaves like a concave mirror of focal length 10 cm.
Now we will use formula of focal length to find focal length of the lens
$\dfrac{1}{F} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_m}}}$
${f_m}$ is the focal length of the mirror in cm,
${f_1}$ is the focal length in cm
F is focal length of lens in cm
$\dfrac{1}{F} = \dfrac{2}{{{f_1}}} + \dfrac{1}{{{f_m}}}$……. (1)
As we know that the focal length of mirror will be infinity, so ${f_m}$=0
The relation between focal length, radius of curvature and refractive index is given below,
$\dfrac{1}{{{f_1}}} = (\mu - 1)\left( {\dfrac{1}{R}} \right)$
Where,
$\mu $is the refractive index
R is the radius of curvature cm.
Putting the values of F, ${f_1}$and ${f_m}$in equation (1)
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{1}{\infty }$
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + 0$
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right)$
$30 = \dfrac{R}{{2(\mu - 1)}}$
$60 = \dfrac{R}{{(\mu - 1)}}$…….. (2)
Now, using the formula of focal length when silvered on the convex side. Let focal length is ${F_1}$
$\dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_m}}}$
In this ${f_m}$case will be equal to $\dfrac{R}{2}$
\[\dfrac{1}{{{F_1}}} = \dfrac{2}{{{f_1}}} + \dfrac{1}{{R/2}}\]
\[\dfrac{1}{{{F_1}}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{1}{{R/2}}\]
\[\dfrac{1}{{{F_1}}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} = 2\left( {\dfrac{1}{{60}}} \right) + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} = \dfrac{1}{{30}} + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} - \dfrac{1}{{30}} = \dfrac{2}{R}\]
\[\dfrac{2}{{30}} = \dfrac{2}{R}\]
\[R = 30{\text{ }}cm\]
Putting the value of R in equation (2)
\[60 = \dfrac{{30}}{{(\mu - 1)}}\]
\[(\mu - 1) = \dfrac{{30}}{{60}}\]
\[(\mu - 1) = \dfrac{1}{2}\]
\[\mu = \dfrac{1}{2} + 1\]
\[\mu = \dfrac{3}{2}\]
$\therefore$ the value of the refractive index of lens is, \[\mu = 1.5\]
Hence, the correct answer is option (D).
Note: From the above we found the refractive index of a Plano convex lens. As calculated above just use the formula of focal length of the lens. But remember that the focal length of parts of the lens when will be infinity and when will be equal to half of the radius of curvature.
Complete step by step answer:
Given,
When silvered in the plane side the Plano convex lens behaves like a concave mirror of focal length 30 cm.
When silvered on the convex side the Plano convex lens behaves like a concave mirror of focal length 10 cm.
Now we will use formula of focal length to find focal length of the lens
$\dfrac{1}{F} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_m}}}$
${f_m}$ is the focal length of the mirror in cm,
${f_1}$ is the focal length in cm
F is focal length of lens in cm
$\dfrac{1}{F} = \dfrac{2}{{{f_1}}} + \dfrac{1}{{{f_m}}}$……. (1)
As we know that the focal length of mirror will be infinity, so ${f_m}$=0
The relation between focal length, radius of curvature and refractive index is given below,
$\dfrac{1}{{{f_1}}} = (\mu - 1)\left( {\dfrac{1}{R}} \right)$
Where,
$\mu $is the refractive index
R is the radius of curvature cm.
Putting the values of F, ${f_1}$and ${f_m}$in equation (1)
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{1}{\infty }$
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + 0$
$\dfrac{1}{{30}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right)$
$30 = \dfrac{R}{{2(\mu - 1)}}$
$60 = \dfrac{R}{{(\mu - 1)}}$…….. (2)
Now, using the formula of focal length when silvered on the convex side. Let focal length is ${F_1}$
$\dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_m}}}$
In this ${f_m}$case will be equal to $\dfrac{R}{2}$
\[\dfrac{1}{{{F_1}}} = \dfrac{2}{{{f_1}}} + \dfrac{1}{{R/2}}\]
\[\dfrac{1}{{{F_1}}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{1}{{R/2}}\]
\[\dfrac{1}{{{F_1}}} = 2(\mu - 1)\left( {\dfrac{1}{R}} \right) + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} = 2\left( {\dfrac{1}{{60}}} \right) + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} = \dfrac{1}{{30}} + \dfrac{2}{R}\]
\[\dfrac{1}{{10}} - \dfrac{1}{{30}} = \dfrac{2}{R}\]
\[\dfrac{2}{{30}} = \dfrac{2}{R}\]
\[R = 30{\text{ }}cm\]
Putting the value of R in equation (2)
\[60 = \dfrac{{30}}{{(\mu - 1)}}\]
\[(\mu - 1) = \dfrac{{30}}{{60}}\]
\[(\mu - 1) = \dfrac{1}{2}\]
\[\mu = \dfrac{1}{2} + 1\]
\[\mu = \dfrac{3}{2}\]
$\therefore$ the value of the refractive index of lens is, \[\mu = 1.5\]
Hence, the correct answer is option (D).
Note: From the above we found the refractive index of a Plano convex lens. As calculated above just use the formula of focal length of the lens. But remember that the focal length of parts of the lens when will be infinity and when will be equal to half of the radius of curvature.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE