
A Plano convex lens, when silvered in the plane side, behaves like a concave mirror of focal length 30 cm. however, when silvered on the convex side it behaves like a concave mirror of focal length 10 cm. then the refractive index of its material will be
A. 3.0
B. 2.0
C. 2.5
D. 1.5
Answer
471.9k+ views
2 likes
Hint: In this question we have to find the refractive index of the material of the lens. For this use the formula of focal length, and then use the relation of focal length with radius of curvature and refractive index.
Complete step by step answer:
Given,
When silvered in the plane side the Plano convex lens behaves like a concave mirror of focal length 30 cm.
When silvered on the convex side the Plano convex lens behaves like a concave mirror of focal length 10 cm.
Now we will use formula of focal length to find focal length of the lens
is the focal length of the mirror in cm,
is the focal length in cm
F is focal length of lens in cm
……. (1)
As we know that the focal length of mirror will be infinity, so =0
The relation between focal length, radius of curvature and refractive index is given below,
Where,
is the refractive index
R is the radius of curvature cm.
Putting the values of F, and in equation (1)
…….. (2)
Now, using the formula of focal length when silvered on the convex side. Let focal length is
In this case will be equal to
Putting the value of R in equation (2)
the value of the refractive index of lens is,
Hence, the correct answer is option (D).
Note: From the above we found the refractive index of a Plano convex lens. As calculated above just use the formula of focal length of the lens. But remember that the focal length of parts of the lens when will be infinity and when will be equal to half of the radius of curvature.
Complete step by step answer:
Given,
When silvered in the plane side the Plano convex lens behaves like a concave mirror of focal length 30 cm.
When silvered on the convex side the Plano convex lens behaves like a concave mirror of focal length 10 cm.
Now we will use formula of focal length to find focal length of the lens
F is focal length of lens in cm
As we know that the focal length of mirror will be infinity, so
The relation between focal length, radius of curvature and refractive index is given below,
Where,
R is the radius of curvature cm.
Putting the values of F,
Now, using the formula of focal length when silvered on the convex side. Let focal length is
In this
Putting the value of R in equation (2)
Hence, the correct answer is option (D).
Note: From the above we found the refractive index of a Plano convex lens. As calculated above just use the formula of focal length of the lens. But remember that the focal length of parts of the lens when will be infinity and when will be equal to half of the radius of curvature.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
