Answer
Verified
408.9k+ views
Hint A capacitor is a device that stores electric energy drawn from the electric field. It usually consists of 2 conductor plates separated by a region filled with vacuum or a dielectric material. The capacitance or ability to store energy of such a plate is defined by $C = \dfrac{Q}{V} = \dfrac{{\varepsilon A}}{d}$ .
Thus, the capacitance of a capacitor is dependent directly on the area of the plates.
Formulas used: We will be using the formula to find the electric field between the plates of the capacitor, $E = \dfrac{q}{{{\varepsilon _0}A}}$ where $E$ is the electric field between the capacitor plates, $q$ is the charge flowing in between the plates, ${\varepsilon _0}$ is a constant called permittivity, and $A$ is the area between the plates.
We will also be using the formula to find the displacement current, ${I_d} = {\varepsilon _0}\dfrac{{\partial {\Phi _E}}}{{\partial t}}$ where ${I_d}$ is the displacement current, ${\Phi _E}$ is the electric flux and $t$ is the time taken.
Complete Step by Step Answer:
We know that the capacitor is a device that is capable of storing electrical energy. The capacitor looks like 2 parallel plates arranged with a dielectric substance in between them. It stores the electrical energy from the electric field formed when charges are passed through the plates.
From the problem we can infer that the capacitor is charged by a constant current $i$ and a plane of surface area $A/2$ is introduced in between them.
Now let us calculate the electric field due to the charge $i$ , which is given by $E = \dfrac{q}{{{\varepsilon _0}A}}$ . We know that the electric flux is the rate of flow of electric field in a given area. In the area between the newly introduced plate, the electric flux will be,
${\Phi _E} = E.A$
${\Phi _E} = \dfrac{q}{{{\varepsilon _0}A}} \times \dfrac{A}{2}$
Solving the equation, we get, electric flux in between the plates of the capacitor to be, ${\Phi _E} = \dfrac{q}{{2{\varepsilon _0}}}$ .
Now to find the displacement current, which is given by the formula ${I_d} = {\varepsilon _0}\dfrac{{\partial {\Phi _E}}}{{\partial t}}$ . Substituting the known values in the formula we get
${I_d} = {\varepsilon _0}\dfrac{{d\left( {\dfrac{q}{{2{\varepsilon _0}}}} \right)}}{{dt}}$
${I_d} = \dfrac{{{\varepsilon _0}}}{{2{\varepsilon _0}}} \times \dfrac{{dq}}{{dt}}$
We know that current is nothing but the rate of change of flow of charges. \[\left( {i = \dfrac{{dq}}{{dt}}} \right)\] Substituting in the equation and solving we get,
$ \Rightarrow {I_d} = \dfrac{i}{2}$
Thus, we know that the current is halved when a plate of $\dfrac{A}{2}$ surface area is introduced in between the capacitor plates.
Note: We can see that when the area is halved the electric flux of the electric field is also halved and so is the displacement current. Thus, we can say that the displacement current is directly proportional to the electric flux which is directly proportional to the area of plates.
Thus, the capacitance of a capacitor is dependent directly on the area of the plates.
Formulas used: We will be using the formula to find the electric field between the plates of the capacitor, $E = \dfrac{q}{{{\varepsilon _0}A}}$ where $E$ is the electric field between the capacitor plates, $q$ is the charge flowing in between the plates, ${\varepsilon _0}$ is a constant called permittivity, and $A$ is the area between the plates.
We will also be using the formula to find the displacement current, ${I_d} = {\varepsilon _0}\dfrac{{\partial {\Phi _E}}}{{\partial t}}$ where ${I_d}$ is the displacement current, ${\Phi _E}$ is the electric flux and $t$ is the time taken.
Complete Step by Step Answer:
We know that the capacitor is a device that is capable of storing electrical energy. The capacitor looks like 2 parallel plates arranged with a dielectric substance in between them. It stores the electrical energy from the electric field formed when charges are passed through the plates.
From the problem we can infer that the capacitor is charged by a constant current $i$ and a plane of surface area $A/2$ is introduced in between them.
Now let us calculate the electric field due to the charge $i$ , which is given by $E = \dfrac{q}{{{\varepsilon _0}A}}$ . We know that the electric flux is the rate of flow of electric field in a given area. In the area between the newly introduced plate, the electric flux will be,
${\Phi _E} = E.A$
${\Phi _E} = \dfrac{q}{{{\varepsilon _0}A}} \times \dfrac{A}{2}$
Solving the equation, we get, electric flux in between the plates of the capacitor to be, ${\Phi _E} = \dfrac{q}{{2{\varepsilon _0}}}$ .
Now to find the displacement current, which is given by the formula ${I_d} = {\varepsilon _0}\dfrac{{\partial {\Phi _E}}}{{\partial t}}$ . Substituting the known values in the formula we get
${I_d} = {\varepsilon _0}\dfrac{{d\left( {\dfrac{q}{{2{\varepsilon _0}}}} \right)}}{{dt}}$
${I_d} = \dfrac{{{\varepsilon _0}}}{{2{\varepsilon _0}}} \times \dfrac{{dq}}{{dt}}$
We know that current is nothing but the rate of change of flow of charges. \[\left( {i = \dfrac{{dq}}{{dt}}} \right)\] Substituting in the equation and solving we get,
$ \Rightarrow {I_d} = \dfrac{i}{2}$
Thus, we know that the current is halved when a plate of $\dfrac{A}{2}$ surface area is introduced in between the capacitor plates.
Note: We can see that when the area is halved the electric flux of the electric field is also halved and so is the displacement current. Thus, we can say that the displacement current is directly proportional to the electric flux which is directly proportional to the area of plates.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE