
A parallel plate capacitor of capacitance C has spacing d between two plates having area A.
The region between the plates is filled with N dielectric layers, parallel to its plates, each with N dielectric layers, parallel to its plates, each with thickness \[{{\delta = }}\dfrac{{{d}}}{{{N}}}\]. The dielectric constant of the \[{{{m}}^{{{th}}}}\]s layer is \[{{{K}}_{{m}}} = {{K}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)\]. For a very large N\[\left( { > {{10}^3}} \right)\], the capacitance C is\[{{\alpha }}\left( {\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{dln2}}}}} \right)\].
The value of \[\alpha \]will be ……………………………. [\[{{{\varepsilon }}_{{0}}}\]is the permittivity of free space]
Answer
512.1k+ views
Hint: To find the required value for α we have to understand the region between the plates having N dielectric layers is equivalent to combination N-capacitors having different values of dielectric constant. So, we have to calculate the small elemental capacitance for each capacitor in a sequent manner and then take their equivalent capacitance. We take the formula for an elemental capacitor as:- \[{{dc = }}\dfrac{{{{{\varepsilon }}_{{0}}}{{{K}}_{{m}}}{{A}}}}{{{{dx}}}}\] , where \[{{dc }}\]is the elemental capacitance dx is the spacing between plates having elemental area A. Then after we will calculate the equivalent capacitance by the formula: \[\dfrac{1}{{{{{C}}_{{{eq}}}}}} = \int {\dfrac{1}{{{{dc}}}}} \] and get the required value for α.
Complete step by step answer:
To calculate the elemental capacitance we are taking small elemental capacitor at a distance x of dielectric thickness dx along with the spacing of the plate as shown in figure 1.1
Formula used: \[{{dc = }}\dfrac{{{{{\varepsilon }}_{{0}}}{{{K}}_{{m}}}{{A}}}}{{{{dx}}}}\], where \[{{dc }}\]is the elemental capacitance dx is the spacing between plates having elemental area A.
As per the information given in the question we have given that-
\[{{\delta = }}\dfrac{{{d}}}{{{N}}}\]……………. (i)
\[{{{K}}_{{m}}} = {{K}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)\]………. (ii)
\[{{C = \alpha }}\left( {\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{dln2}}}}} \right)\]………….(iii)
\[ \Rightarrow \dfrac{x}{m} = \dfrac{d}{N}\]……………… (iv)
For the series combination of dielectrics formula used:
\[\dfrac{1}{{{{{C}}_{{{eq}}}}}} = \int {\dfrac{1}{{{{dc}}}}} \]………………… (v)
Since, \[\dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}\]
\[ \Rightarrow \dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}\]…………… (vi)
Substitute the value of \[\dfrac{1}{{{{dc}}}}\]in the equation (v), we get
\[\dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_0^d {\dfrac{{{{dx}}}}{{{{{K}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}} \]…………….. (vii)
Using the equation (iii) in equation (vii)
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{x}{d}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{ddx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{d + x}}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\dfrac{{{d}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}\ln 2\]
\[ \Rightarrow {{{C}}_{{{eq}}}}{{ = }}\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{d}}\ln 2}}\]……………….. (viii)
On comparing both the equation (viii) and (ii), we get
\[\alpha = 1\]
$\therefore$ The value of $\alpha = 1$
Note:
In order to answer this type of question, the key is to know the basic algorithm behind the calculation of equivalent capacitance of a system having dielectric varies with certain parameters like varies with distance, varies with filling orientation, etc. So for grasping the ideas behind such conceptual problems one should have to practice a lot of numerical and derivative type problems on this topic.
Complete step by step answer:
To calculate the elemental capacitance we are taking small elemental capacitor at a distance x of dielectric thickness dx along with the spacing of the plate as shown in figure 1.1
Formula used: \[{{dc = }}\dfrac{{{{{\varepsilon }}_{{0}}}{{{K}}_{{m}}}{{A}}}}{{{{dx}}}}\], where \[{{dc }}\]is the elemental capacitance dx is the spacing between plates having elemental area A.

As per the information given in the question we have given that-
\[{{\delta = }}\dfrac{{{d}}}{{{N}}}\]……………. (i)
\[{{{K}}_{{m}}} = {{K}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)\]………. (ii)
\[{{C = \alpha }}\left( {\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{dln2}}}}} \right)\]………….(iii)
\[ \Rightarrow \dfrac{x}{m} = \dfrac{d}{N}\]……………… (iv)
For the series combination of dielectrics formula used:
\[\dfrac{1}{{{{{C}}_{{{eq}}}}}} = \int {\dfrac{1}{{{{dc}}}}} \]………………… (v)
Since, \[\dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}\]
\[ \Rightarrow \dfrac{{{1}}}{{{{dc}}}}{{ = }}\dfrac{{{{dx}}}}{{{{{k}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}\]…………… (vi)
Substitute the value of \[\dfrac{1}{{{{dc}}}}\]in the equation (v), we get
\[\dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_0^d {\dfrac{{{{dx}}}}{{{{{K}}_{{m}}}{{{\varepsilon }}_{{0}}}{{A}}}}} \]…………….. (vii)
Using the equation (iii) in equation (vii)
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{{{m}}}{{{N}}}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{dx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{1 + }}\dfrac{x}{d}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\int\limits_{{0}}^{{d}} {\dfrac{{{{ddx}}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}\left( {{{d + x}}} \right)}}} \]
\[ \Rightarrow \dfrac{{{1}}}{{{{{C}}_{{{eq}}}}}}{{ = }}\dfrac{{{d}}}{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}\ln 2\]
\[ \Rightarrow {{{C}}_{{{eq}}}}{{ = }}\dfrac{{{{K}}{{{\varepsilon }}_{{0}}}{{A}}}}{{{{d}}\ln 2}}\]……………….. (viii)
On comparing both the equation (viii) and (ii), we get
\[\alpha = 1\]
$\therefore$ The value of $\alpha = 1$
Note:
In order to answer this type of question, the key is to know the basic algorithm behind the calculation of equivalent capacitance of a system having dielectric varies with certain parameters like varies with distance, varies with filling orientation, etc. So for grasping the ideas behind such conceptual problems one should have to practice a lot of numerical and derivative type problems on this topic.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
