
A npn transistor operates as a common emitter amplifier, with a power gain of \[60\,{\text{dB}}\] . The input circuit resistance is \[100\,\Omega \] and the output load resistance is \[10\,{\text{k}}\Omega \] . The common emitter current gain \[\beta \] is:
A. \[60\]
B. \[{10^4}\]
C. \[6 \times {10^2}\]
D. \[{10^2}\]
Answer
552.3k+ views
Hint: First of all, we will convert the power gain, which is in decibels. After that, we will use the expression for the power gain which is the product of voltage gain and current gain. We will replace voltage gain by current gain along with some necessary modifications. We will manipulate accordingly and find the result.
Formula used:
The power gain can be converted which is in decibels can be converted using the formula:
\[{A_{{{\text{p}}_{{\text{dB}}}}}} = 10 \times {\log _{10}}{A_{\text{p}}}\] …… (1)
Where,
\[{A_{{{\text{p}}_{{\text{dB}}}}}}\] indicates power gain in decibels.
The formula which gives the power gain and relates voltage gain and current gain is shown below:
\[{A_{\text{p}}} = {A_{\text{v}}} \times \beta \] …… (2)
\[{A_{\text{p}}}\] indicates power gain.
\[{A_{\text{v}}}\] indicates voltage gain.
\[\beta \] indicates current gain.
Again, the formula which gives the relation between the voltage gain and the current gain is as follows:
\[{A_{\text{v}}} = \beta \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}}\] …… (3)
Complete step by step answer:
In the given question, we are supplied with the following data:
There is an npn transistor which operates as a common amplifier.There is power gain of \[60\,{\text{dB}}\] .The inside circuit resistance of a common emitter amplifier is \[100\,\Omega \] .The output load resistance is \[10\,{\text{k}}\Omega \] .We are asked to find the current gain \[\beta \] .
Let us begin to solve the problem. First, we will find a way to convert the power gain which is in decibels. For this we will substitute the required values in the equation (1) and we get:
${A_{{{\text{p}}_{{\text{dB}}}}}} = 10 \times {\log _{10}}{A_{\text{p}}} \\
\Rightarrow 60 = 10 \times {\log _{10}}{A_{\text{p}}} \\
\Rightarrow 6 = {\log _{10}}{A_{\text{p}}} \\
\Rightarrow {A_{\text{p}}} = {10^6} \\$
Now, we substitute the equation (3) in equation (2) and we get:
${A_{\text{p}}} = {A_{\text{v}}} \times \beta \\
\Rightarrow {A_{\text{p}}} = \beta \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}} \times \beta \\
\Rightarrow {A_{\text{p}}} = {\beta ^2} \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}} \\
\Rightarrow \beta = \sqrt {\dfrac{{{A_{\text{p}}} \times {R_{{\text{in}}}}}}{{{R_{{\text{out}}}}}}} \\$
Now, we substitute the required values in the above equation found:
$\beta = \sqrt {\dfrac{{{A_{\text{p}}} \times {R_{{\text{in}}}}}}{{{R_{{\text{out}}}}}}} \\
\Rightarrow \beta = \sqrt {\dfrac{{{{10}^6} \times 100}}{{10 \times {{10}^3}}}} \\
\Rightarrow \beta = \sqrt {{{10}^4}} \\
\therefore \beta = 100$
Hence, the required current gain is found to be \[100\] .
The correct option is D.
Note:While solving the problem, we should remember that the power gain which is in decibels must be converted. Most of the students tend to make mistakes by not converting the power gain and they get irrelevant results.
Formula used:
The power gain can be converted which is in decibels can be converted using the formula:
\[{A_{{{\text{p}}_{{\text{dB}}}}}} = 10 \times {\log _{10}}{A_{\text{p}}}\] …… (1)
Where,
\[{A_{{{\text{p}}_{{\text{dB}}}}}}\] indicates power gain in decibels.
The formula which gives the power gain and relates voltage gain and current gain is shown below:
\[{A_{\text{p}}} = {A_{\text{v}}} \times \beta \] …… (2)
\[{A_{\text{p}}}\] indicates power gain.
\[{A_{\text{v}}}\] indicates voltage gain.
\[\beta \] indicates current gain.
Again, the formula which gives the relation between the voltage gain and the current gain is as follows:
\[{A_{\text{v}}} = \beta \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}}\] …… (3)
Complete step by step answer:
In the given question, we are supplied with the following data:
There is an npn transistor which operates as a common amplifier.There is power gain of \[60\,{\text{dB}}\] .The inside circuit resistance of a common emitter amplifier is \[100\,\Omega \] .The output load resistance is \[10\,{\text{k}}\Omega \] .We are asked to find the current gain \[\beta \] .
Let us begin to solve the problem. First, we will find a way to convert the power gain which is in decibels. For this we will substitute the required values in the equation (1) and we get:
${A_{{{\text{p}}_{{\text{dB}}}}}} = 10 \times {\log _{10}}{A_{\text{p}}} \\
\Rightarrow 60 = 10 \times {\log _{10}}{A_{\text{p}}} \\
\Rightarrow 6 = {\log _{10}}{A_{\text{p}}} \\
\Rightarrow {A_{\text{p}}} = {10^6} \\$
Now, we substitute the equation (3) in equation (2) and we get:
${A_{\text{p}}} = {A_{\text{v}}} \times \beta \\
\Rightarrow {A_{\text{p}}} = \beta \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}} \times \beta \\
\Rightarrow {A_{\text{p}}} = {\beta ^2} \times \dfrac{{{R_{{\text{out}}}}}}{{{R_{{\text{in}}}}}} \\
\Rightarrow \beta = \sqrt {\dfrac{{{A_{\text{p}}} \times {R_{{\text{in}}}}}}{{{R_{{\text{out}}}}}}} \\$
Now, we substitute the required values in the above equation found:
$\beta = \sqrt {\dfrac{{{A_{\text{p}}} \times {R_{{\text{in}}}}}}{{{R_{{\text{out}}}}}}} \\
\Rightarrow \beta = \sqrt {\dfrac{{{{10}^6} \times 100}}{{10 \times {{10}^3}}}} \\
\Rightarrow \beta = \sqrt {{{10}^4}} \\
\therefore \beta = 100$
Hence, the required current gain is found to be \[100\] .
The correct option is D.
Note:While solving the problem, we should remember that the power gain which is in decibels must be converted. Most of the students tend to make mistakes by not converting the power gain and they get irrelevant results.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

