
A normal, to parabola ${y^2} = 4ax$,whose inclination is ${30^{\circ}}$, to a parabola cuts it again at an angle of
A) ${\tan ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)$
B) ${\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right)$
C) ${\tan ^{ - 1}}\left( {2\sqrt 3 } \right)$
D) \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\]
Answer
563.4k+ views
Hint:
Find the slope of tangent and normal by the equation of normal or tangent, and use the formula of angle between the normal and tangent and find the angle between them
For a parabola of equation ${y^2} = 4ax$ the tangent equation at $p(a{t_1}^2,2a{t_1})$ is ${t_1}y = x + a{t_1}^2$ where the value of the slope ${m_T} = \dfrac{1}{{{t_1}}}$
Complete step by step solution:
We know that the product of the slopes of normal and tangent is -1.
$
\Rightarrow {m_T} \times {m_N} = - 1 \\
\Rightarrow {m_N} = \dfrac{{ - 1}}{{{m_T}}} \\
\Rightarrow {m_N} = \dfrac{{ - 1}}{{(\dfrac{1}{{{t_1}}})}} \\
\Rightarrow {m_N} = - {t_1}.........(1) \\
$
We know that normal is always perpendicular to the tangent at point p.
We know that the equation of tangent at parabola ${y^2} = 4ax$ at $p(a{t_1}^2, 2a{t_1})$ is ${t_1}y = x + a{t_1}^2$ here, value of slope ${m_T} = \dfrac{1}{{{t_1}}}..........\left( 2 \right)$
So, the equation of normal with ${m_N} = - {t_1}$ and passing at $P(a{t_1}^2,2a{t_1})$ is
\[
\Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right) \\
\Rightarrow (y - 2a{t_1}) = m(x - a{t_1}^2) \\
\Rightarrow (y - 2a{t_1}) = - {t_1}(x - a{t_1}^2) \\
\Rightarrow y - 2a{t_1} = - {t_1}x + a{t_1}^2 \\
\Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^3..........\left( 3 \right) \\
\]
So, according to the question normal also cuts the curve at point $Q(a{t_2}^2,2a{t_2})$
Substitute the value of $Q(a{t_2}^2,2a{t_2})$ in the equation (3)
\[
\Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^{3} \\
\Rightarrow \left( {2a{t_2}} \right) + {t_1}\left( {a{t_2}^{2}} \right) = 2a{t_1} + a{t_1}^{3} \\
\Rightarrow 2a\left( {{t_2} - {t_1}} \right) + a{t_1}({t_2}^{2} - {t_1}^{2}) = 0 \\
\Rightarrow a\left( {{t_2} - {t_1}} \right)\left[ {{t_1}\left( {{t_1} + {t_2}} \right) + 2} \right] = 0 \\
\Rightarrow {t_1}\left( {{t_1} + {t_2}} \right) + 2 = 0 \\
\Rightarrow {t_2} = - {t_1} - \dfrac{2}{{{t_1}}}.........\left( 4 \right) \\ \]
So, we know that $\tan \alpha = - {t_1}$, where $\alpha = {30^{\circ}}$, so $ - {t_1} = \dfrac{1}{{\sqrt 3 }}$
Substitute this value in equation (4), we get
$
\Rightarrow {t_2} = \dfrac{{ - \left( {{t_1}^2 + 2} \right)}}{{{t_1}}} \\
\Rightarrow {t_2} = \dfrac{{ - \left( {\dfrac{1}{3} + 2} \right)}}{{\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)}} \\
\Rightarrow {t_2} = \dfrac{7}{3} \times \sqrt 3 \\
\Rightarrow {t_2} = \dfrac{7}{{\sqrt 3 }} \\
$
Normal cuts the curve at an angle of,
\[
\Rightarrow \tan \Phi = \dfrac{{{m_N} - {m_T}}}{{1 + {m_N}{m_T}}} \\
\Rightarrow \tan \Phi = \dfrac{{ - {t_1} - \dfrac{1}{{{t_2}}}}}{{1 + \left( {\dfrac{{ - {t_1}}}{{{t_2}}}} \right)}} \\
\Rightarrow \tan \Phi = - \left( {\dfrac{{{t_1}{t_2} + 1}}{{{t_2}}}} \right)\left( {\dfrac{{{t_2}}}{{{t_2} - {t_1}}}} \right) \\
\Rightarrow \tan \Phi = \dfrac{{ - \left( {{t_1}{t_2} + 1} \right)}}{{{t_2} - {t_1}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {{t_1}{t_2} + 1} \right)}}{{{t_1} - {t_2}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{{ - 7}}{3} + 1} \right)}}{{ - \dfrac{1}{{\sqrt 3 }} - \dfrac{7}{{\sqrt 3 }}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{7}{3} - 1} \right)}}{{\left( {\dfrac{8}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \Phi = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{8} \\
\Rightarrow \tan \Phi = \dfrac{1}{{2\sqrt 3 }} \\
\Rightarrow \Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right) \\
\]
So, the normal, to parabola ${y^2} = 4ax$,whose inclination is ${30^{\circ}}$, to a parabola cuts it again at an angle of \[\Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\]
So, option D is correct.
Note:
Always take care of the normal and tangent equations, derive the value of ${t_{1\,}}\,and\,{t_2}$, and apply in the formula of angle made by the normal when it cuts the curve. Point P and Q are two different points with different parameters.
Find the slope of tangent and normal by the equation of normal or tangent, and use the formula of angle between the normal and tangent and find the angle between them
For a parabola of equation ${y^2} = 4ax$ the tangent equation at $p(a{t_1}^2,2a{t_1})$ is ${t_1}y = x + a{t_1}^2$ where the value of the slope ${m_T} = \dfrac{1}{{{t_1}}}$
Complete step by step solution:
We know that the product of the slopes of normal and tangent is -1.
$
\Rightarrow {m_T} \times {m_N} = - 1 \\
\Rightarrow {m_N} = \dfrac{{ - 1}}{{{m_T}}} \\
\Rightarrow {m_N} = \dfrac{{ - 1}}{{(\dfrac{1}{{{t_1}}})}} \\
\Rightarrow {m_N} = - {t_1}.........(1) \\
$
We know that normal is always perpendicular to the tangent at point p.
We know that the equation of tangent at parabola ${y^2} = 4ax$ at $p(a{t_1}^2, 2a{t_1})$ is ${t_1}y = x + a{t_1}^2$ here, value of slope ${m_T} = \dfrac{1}{{{t_1}}}..........\left( 2 \right)$
So, the equation of normal with ${m_N} = - {t_1}$ and passing at $P(a{t_1}^2,2a{t_1})$ is
\[
\Rightarrow \left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right) \\
\Rightarrow (y - 2a{t_1}) = m(x - a{t_1}^2) \\
\Rightarrow (y - 2a{t_1}) = - {t_1}(x - a{t_1}^2) \\
\Rightarrow y - 2a{t_1} = - {t_1}x + a{t_1}^2 \\
\Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^3..........\left( 3 \right) \\
\]
So, according to the question normal also cuts the curve at point $Q(a{t_2}^2,2a{t_2})$
Substitute the value of $Q(a{t_2}^2,2a{t_2})$ in the equation (3)
\[
\Rightarrow y + {t_1}x = 2a{t_1} + a{t_1}^{3} \\
\Rightarrow \left( {2a{t_2}} \right) + {t_1}\left( {a{t_2}^{2}} \right) = 2a{t_1} + a{t_1}^{3} \\
\Rightarrow 2a\left( {{t_2} - {t_1}} \right) + a{t_1}({t_2}^{2} - {t_1}^{2}) = 0 \\
\Rightarrow a\left( {{t_2} - {t_1}} \right)\left[ {{t_1}\left( {{t_1} + {t_2}} \right) + 2} \right] = 0 \\
\Rightarrow {t_1}\left( {{t_1} + {t_2}} \right) + 2 = 0 \\
\Rightarrow {t_2} = - {t_1} - \dfrac{2}{{{t_1}}}.........\left( 4 \right) \\ \]
So, we know that $\tan \alpha = - {t_1}$, where $\alpha = {30^{\circ}}$, so $ - {t_1} = \dfrac{1}{{\sqrt 3 }}$
Substitute this value in equation (4), we get
$
\Rightarrow {t_2} = \dfrac{{ - \left( {{t_1}^2 + 2} \right)}}{{{t_1}}} \\
\Rightarrow {t_2} = \dfrac{{ - \left( {\dfrac{1}{3} + 2} \right)}}{{\left( {\dfrac{{ - 1}}{{\sqrt 3 }}} \right)}} \\
\Rightarrow {t_2} = \dfrac{7}{3} \times \sqrt 3 \\
\Rightarrow {t_2} = \dfrac{7}{{\sqrt 3 }} \\
$
Normal cuts the curve at an angle of,
\[
\Rightarrow \tan \Phi = \dfrac{{{m_N} - {m_T}}}{{1 + {m_N}{m_T}}} \\
\Rightarrow \tan \Phi = \dfrac{{ - {t_1} - \dfrac{1}{{{t_2}}}}}{{1 + \left( {\dfrac{{ - {t_1}}}{{{t_2}}}} \right)}} \\
\Rightarrow \tan \Phi = - \left( {\dfrac{{{t_1}{t_2} + 1}}{{{t_2}}}} \right)\left( {\dfrac{{{t_2}}}{{{t_2} - {t_1}}}} \right) \\
\Rightarrow \tan \Phi = \dfrac{{ - \left( {{t_1}{t_2} + 1} \right)}}{{{t_2} - {t_1}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {{t_1}{t_2} + 1} \right)}}{{{t_1} - {t_2}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{{ - 7}}{3} + 1} \right)}}{{ - \dfrac{1}{{\sqrt 3 }} - \dfrac{7}{{\sqrt 3 }}}} \\
\Rightarrow \tan \Phi = \dfrac{{\left( {\dfrac{7}{3} - 1} \right)}}{{\left( {\dfrac{8}{{\sqrt 3 }}} \right)}} \\
\Rightarrow \tan \Phi = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{8} \\
\Rightarrow \tan \Phi = \dfrac{1}{{2\sqrt 3 }} \\
\Rightarrow \Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right) \\
\]
So, the normal, to parabola ${y^2} = 4ax$,whose inclination is ${30^{\circ}}$, to a parabola cuts it again at an angle of \[\Phi = {\tan ^{ - 1}}\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\]
So, option D is correct.
Note:
Always take care of the normal and tangent equations, derive the value of ${t_{1\,}}\,and\,{t_2}$, and apply in the formula of angle made by the normal when it cuts the curve. Point P and Q are two different points with different parameters.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

