
A line is such that its segment between the straight lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $ is bisected at the point $ \left( 1,5 \right) $ . Obtain its equation.
(a) $ 107x+y-92=0 $
(b) $ 17x-3y+92=0 $
(c) $ 10x+3y+92=0 $
(d) $ 107x-3y-92=0 $
Answer
556.8k+ views
Hint:
We start solving the problem by assuming the slope of the required line as m and we then find its equation by using the fact that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ . We then find the points of intersection of the obtained line with the lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $. We then find the midpoint of the obtained intersection points and equate it to $ \left( 1,5 \right) $. We then make the necessary calculations to get the required value of m which then gives us the equation of the line.
Complete step by step answer:
According to the problem, we are asked to find the equation of the line is such that its segment between the straight lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $ is bisected at the point $ \left( 1,5 \right) $.
Let us assume the slope of the require line be ‘m’. We know that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ .
So, we get the equation of the required line as $ y-5=m\left( x-1 \right) $ .
$ \Rightarrow y-5=mx-m $ .
$ \Rightarrow mx-y-m+5=0 $ ---(1).
Let us find the point of intersection of lines $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( -1\times \left( -m+5 \right) \right)-\left( -1\times 4 \right)}=\dfrac{y}{\left( 4\times m \right)-\left( \left( -m+5 \right)\times 5 \right)}=\dfrac{1}{\left( 5\times -1 \right)-\left( -1\times m \right)} $ .
$ \Rightarrow \dfrac{x}{\left( m-5 \right)-\left( -4 \right)}=\dfrac{y}{\left( 4m \right)-\left( -5m+25 \right)}=\dfrac{1}{\left( -5 \right)-\left( -m \right)} $ .
$ \Rightarrow \dfrac{x}{m-5+4}=\dfrac{y}{4m+5m-25}=\dfrac{1}{-5+m} $ .
$ \Rightarrow \dfrac{x}{m-1}=\dfrac{y}{9m-25}=\dfrac{1}{m-5} $ .
$ \Rightarrow x=\dfrac{m-1}{m-5} $ , $ y=\dfrac{9m-25}{m-5} $ .
So, the intersection point of $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ is $ A\left( \dfrac{m-1}{m-5},\dfrac{9m-25}{m-5} \right) $ ---(2).
Now, let us find the point of intersection of lines $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( 4\times \left( -m+5 \right) \right)-\left( -1\times -4 \right)}=\dfrac{y}{\left( -4\times m \right)-\left( \left( -m+5 \right)\times 3 \right)}=\dfrac{1}{\left( 3\times -1 \right)-\left( 4\times m \right)} $ .
$ \Rightarrow \dfrac{x}{-4m+20-4}=\dfrac{y}{-4m+3m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow \dfrac{x}{-4m+16}=\dfrac{y}{-m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow x=\dfrac{4m-16}{3+4m} $ , $ y=\dfrac{m+15}{3+4m} $ .
So, the intersection point of $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ is $ B\left( \dfrac{4m-16}{3+4m},\dfrac{m+15}{3+4m} \right) $ ---(3).
According to the problem, we are given that the mid-point of AB is $ \left( 1,5 \right) $ .
So, we have $ \left( \dfrac{\left( \dfrac{m-1}{m-5}+\dfrac{4m-16}{3+4m} \right)}{2},\dfrac{\left( \dfrac{9m-25}{m-5}+\dfrac{m+15}{3+4m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{\left( m-1 \right)\left( 3+4m \right)+\left( 4m+16 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2},\dfrac{\left( \dfrac{\left( 9m-25 \right)\left( 3+4m \right)+\left( m+15 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{4{{m}^{2}}+3m-4m-3+4{{m}^{2}}-16m-20m+80}{4{{m}^{2}}+3m-20m-15} \right)}{2},\dfrac{\left( \dfrac{36{{m}^{2}}+27m-100m-75+{{m}^{2}}+15m-5m-75}{3m+4{{m}^{2}}-15-20m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2},\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2} \right)=\left( 1,5 \right) $ .
\[\Rightarrow \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2}=1\], \[\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2}=5\].
\[\Rightarrow \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15}=2\], \[\dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15}=10\].
\[\Rightarrow 8{{m}^{2}}-37m+77=8{{m}^{2}}-34m-30\], \[37{{m}^{2}}-63m-150=40{{m}^{2}}-170m-150\].
\[\Rightarrow 3m=107\], \[3{{m}^{2}}-107m=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m\left( 3m-107 \right)=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m=0\text{ or }m=\dfrac{107}{3}\].
We take the common value of m as it should be valid for both coordinates of the midpoint.
So, the value of m is $ \dfrac{107}{3} $ . Let us substitute this in equation (1).
So, we get the equation of the line as $ \left( \dfrac{107}{3} \right)x-y-\left( \dfrac{107}{3} \right)+5=0 $ .
$ \Rightarrow \dfrac{107x-3y-107+15}{3}=0 $ .
$ \Rightarrow 107x-3y-92=0 $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem by taking the parametric point on both the given lines and then equating the midpoint of those two parametric points to $ \left( 1,5 \right) $ to find the parameters which later helps us to find the equation of a line. Similarly, we can expect problems to find the equation of the line if $ \left( 1,2 \right) $ divides the line $ 1:2 $ internally.
We start solving the problem by assuming the slope of the required line as m and we then find its equation by using the fact that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ . We then find the points of intersection of the obtained line with the lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $. We then find the midpoint of the obtained intersection points and equate it to $ \left( 1,5 \right) $. We then make the necessary calculations to get the required value of m which then gives us the equation of the line.
Complete step by step answer:
According to the problem, we are asked to find the equation of the line is such that its segment between the straight lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $ is bisected at the point $ \left( 1,5 \right) $.
Let us assume the slope of the require line be ‘m’. We know that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ .
So, we get the equation of the required line as $ y-5=m\left( x-1 \right) $ .
$ \Rightarrow y-5=mx-m $ .
$ \Rightarrow mx-y-m+5=0 $ ---(1).
Let us find the point of intersection of lines $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( -1\times \left( -m+5 \right) \right)-\left( -1\times 4 \right)}=\dfrac{y}{\left( 4\times m \right)-\left( \left( -m+5 \right)\times 5 \right)}=\dfrac{1}{\left( 5\times -1 \right)-\left( -1\times m \right)} $ .
$ \Rightarrow \dfrac{x}{\left( m-5 \right)-\left( -4 \right)}=\dfrac{y}{\left( 4m \right)-\left( -5m+25 \right)}=\dfrac{1}{\left( -5 \right)-\left( -m \right)} $ .
$ \Rightarrow \dfrac{x}{m-5+4}=\dfrac{y}{4m+5m-25}=\dfrac{1}{-5+m} $ .
$ \Rightarrow \dfrac{x}{m-1}=\dfrac{y}{9m-25}=\dfrac{1}{m-5} $ .
$ \Rightarrow x=\dfrac{m-1}{m-5} $ , $ y=\dfrac{9m-25}{m-5} $ .
So, the intersection point of $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ is $ A\left( \dfrac{m-1}{m-5},\dfrac{9m-25}{m-5} \right) $ ---(2).
Now, let us find the point of intersection of lines $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( 4\times \left( -m+5 \right) \right)-\left( -1\times -4 \right)}=\dfrac{y}{\left( -4\times m \right)-\left( \left( -m+5 \right)\times 3 \right)}=\dfrac{1}{\left( 3\times -1 \right)-\left( 4\times m \right)} $ .
$ \Rightarrow \dfrac{x}{-4m+20-4}=\dfrac{y}{-4m+3m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow \dfrac{x}{-4m+16}=\dfrac{y}{-m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow x=\dfrac{4m-16}{3+4m} $ , $ y=\dfrac{m+15}{3+4m} $ .
So, the intersection point of $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ is $ B\left( \dfrac{4m-16}{3+4m},\dfrac{m+15}{3+4m} \right) $ ---(3).
According to the problem, we are given that the mid-point of AB is $ \left( 1,5 \right) $ .
So, we have $ \left( \dfrac{\left( \dfrac{m-1}{m-5}+\dfrac{4m-16}{3+4m} \right)}{2},\dfrac{\left( \dfrac{9m-25}{m-5}+\dfrac{m+15}{3+4m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{\left( m-1 \right)\left( 3+4m \right)+\left( 4m+16 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2},\dfrac{\left( \dfrac{\left( 9m-25 \right)\left( 3+4m \right)+\left( m+15 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{4{{m}^{2}}+3m-4m-3+4{{m}^{2}}-16m-20m+80}{4{{m}^{2}}+3m-20m-15} \right)}{2},\dfrac{\left( \dfrac{36{{m}^{2}}+27m-100m-75+{{m}^{2}}+15m-5m-75}{3m+4{{m}^{2}}-15-20m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2},\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2} \right)=\left( 1,5 \right) $ .
\[\Rightarrow \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2}=1\], \[\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2}=5\].
\[\Rightarrow \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15}=2\], \[\dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15}=10\].
\[\Rightarrow 8{{m}^{2}}-37m+77=8{{m}^{2}}-34m-30\], \[37{{m}^{2}}-63m-150=40{{m}^{2}}-170m-150\].
\[\Rightarrow 3m=107\], \[3{{m}^{2}}-107m=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m\left( 3m-107 \right)=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m=0\text{ or }m=\dfrac{107}{3}\].
We take the common value of m as it should be valid for both coordinates of the midpoint.
So, the value of m is $ \dfrac{107}{3} $ . Let us substitute this in equation (1).
So, we get the equation of the line as $ \left( \dfrac{107}{3} \right)x-y-\left( \dfrac{107}{3} \right)+5=0 $ .
$ \Rightarrow \dfrac{107x-3y-107+15}{3}=0 $ .
$ \Rightarrow 107x-3y-92=0 $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem by taking the parametric point on both the given lines and then equating the midpoint of those two parametric points to $ \left( 1,5 \right) $ to find the parameters which later helps us to find the equation of a line. Similarly, we can expect problems to find the equation of the line if $ \left( 1,2 \right) $ divides the line $ 1:2 $ internally.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

