Answer
Verified
438.9k+ views
Hint:
We start solving the problem by assuming the slope of the required line as m and we then find its equation by using the fact that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ . We then find the points of intersection of the obtained line with the lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $. We then find the midpoint of the obtained intersection points and equate it to $ \left( 1,5 \right) $. We then make the necessary calculations to get the required value of m which then gives us the equation of the line.
Complete step by step answer:
According to the problem, we are asked to find the equation of the line is such that its segment between the straight lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $ is bisected at the point $ \left( 1,5 \right) $.
Let us assume the slope of the require line be ‘m’. We know that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ .
So, we get the equation of the required line as $ y-5=m\left( x-1 \right) $ .
$ \Rightarrow y-5=mx-m $ .
$ \Rightarrow mx-y-m+5=0 $ ---(1).
Let us find the point of intersection of lines $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( -1\times \left( -m+5 \right) \right)-\left( -1\times 4 \right)}=\dfrac{y}{\left( 4\times m \right)-\left( \left( -m+5 \right)\times 5 \right)}=\dfrac{1}{\left( 5\times -1 \right)-\left( -1\times m \right)} $ .
$ \Rightarrow \dfrac{x}{\left( m-5 \right)-\left( -4 \right)}=\dfrac{y}{\left( 4m \right)-\left( -5m+25 \right)}=\dfrac{1}{\left( -5 \right)-\left( -m \right)} $ .
$ \Rightarrow \dfrac{x}{m-5+4}=\dfrac{y}{4m+5m-25}=\dfrac{1}{-5+m} $ .
$ \Rightarrow \dfrac{x}{m-1}=\dfrac{y}{9m-25}=\dfrac{1}{m-5} $ .
$ \Rightarrow x=\dfrac{m-1}{m-5} $ , $ y=\dfrac{9m-25}{m-5} $ .
So, the intersection point of $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ is $ A\left( \dfrac{m-1}{m-5},\dfrac{9m-25}{m-5} \right) $ ---(2).
Now, let us find the point of intersection of lines $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( 4\times \left( -m+5 \right) \right)-\left( -1\times -4 \right)}=\dfrac{y}{\left( -4\times m \right)-\left( \left( -m+5 \right)\times 3 \right)}=\dfrac{1}{\left( 3\times -1 \right)-\left( 4\times m \right)} $ .
$ \Rightarrow \dfrac{x}{-4m+20-4}=\dfrac{y}{-4m+3m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow \dfrac{x}{-4m+16}=\dfrac{y}{-m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow x=\dfrac{4m-16}{3+4m} $ , $ y=\dfrac{m+15}{3+4m} $ .
So, the intersection point of $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ is $ B\left( \dfrac{4m-16}{3+4m},\dfrac{m+15}{3+4m} \right) $ ---(3).
According to the problem, we are given that the mid-point of AB is $ \left( 1,5 \right) $ .
So, we have $ \left( \dfrac{\left( \dfrac{m-1}{m-5}+\dfrac{4m-16}{3+4m} \right)}{2},\dfrac{\left( \dfrac{9m-25}{m-5}+\dfrac{m+15}{3+4m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{\left( m-1 \right)\left( 3+4m \right)+\left( 4m+16 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2},\dfrac{\left( \dfrac{\left( 9m-25 \right)\left( 3+4m \right)+\left( m+15 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{4{{m}^{2}}+3m-4m-3+4{{m}^{2}}-16m-20m+80}{4{{m}^{2}}+3m-20m-15} \right)}{2},\dfrac{\left( \dfrac{36{{m}^{2}}+27m-100m-75+{{m}^{2}}+15m-5m-75}{3m+4{{m}^{2}}-15-20m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2},\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2} \right)=\left( 1,5 \right) $ .
\[\Rightarrow \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2}=1\], \[\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2}=5\].
\[\Rightarrow \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15}=2\], \[\dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15}=10\].
\[\Rightarrow 8{{m}^{2}}-37m+77=8{{m}^{2}}-34m-30\], \[37{{m}^{2}}-63m-150=40{{m}^{2}}-170m-150\].
\[\Rightarrow 3m=107\], \[3{{m}^{2}}-107m=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m\left( 3m-107 \right)=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m=0\text{ or }m=\dfrac{107}{3}\].
We take the common value of m as it should be valid for both coordinates of the midpoint.
So, the value of m is $ \dfrac{107}{3} $ . Let us substitute this in equation (1).
So, we get the equation of the line as $ \left( \dfrac{107}{3} \right)x-y-\left( \dfrac{107}{3} \right)+5=0 $ .
$ \Rightarrow \dfrac{107x-3y-107+15}{3}=0 $ .
$ \Rightarrow 107x-3y-92=0 $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem by taking the parametric point on both the given lines and then equating the midpoint of those two parametric points to $ \left( 1,5 \right) $ to find the parameters which later helps us to find the equation of a line. Similarly, we can expect problems to find the equation of the line if $ \left( 1,2 \right) $ divides the line $ 1:2 $ internally.
We start solving the problem by assuming the slope of the required line as m and we then find its equation by using the fact that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ . We then find the points of intersection of the obtained line with the lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $. We then find the midpoint of the obtained intersection points and equate it to $ \left( 1,5 \right) $. We then make the necessary calculations to get the required value of m which then gives us the equation of the line.
Complete step by step answer:
According to the problem, we are asked to find the equation of the line is such that its segment between the straight lines $ 5x-y+4=0 $ and $ 3x+4y-4=0 $ is bisected at the point $ \left( 1,5 \right) $.
Let us assume the slope of the require line be ‘m’. We know that the equation of the line passing through the point $ \left( {{x}_{1}},{{y}_{1}} \right) $ and having slope m is $ y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) $ .
So, we get the equation of the required line as $ y-5=m\left( x-1 \right) $ .
$ \Rightarrow y-5=mx-m $ .
$ \Rightarrow mx-y-m+5=0 $ ---(1).
Let us find the point of intersection of lines $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( -1\times \left( -m+5 \right) \right)-\left( -1\times 4 \right)}=\dfrac{y}{\left( 4\times m \right)-\left( \left( -m+5 \right)\times 5 \right)}=\dfrac{1}{\left( 5\times -1 \right)-\left( -1\times m \right)} $ .
$ \Rightarrow \dfrac{x}{\left( m-5 \right)-\left( -4 \right)}=\dfrac{y}{\left( 4m \right)-\left( -5m+25 \right)}=\dfrac{1}{\left( -5 \right)-\left( -m \right)} $ .
$ \Rightarrow \dfrac{x}{m-5+4}=\dfrac{y}{4m+5m-25}=\dfrac{1}{-5+m} $ .
$ \Rightarrow \dfrac{x}{m-1}=\dfrac{y}{9m-25}=\dfrac{1}{m-5} $ .
$ \Rightarrow x=\dfrac{m-1}{m-5} $ , $ y=\dfrac{9m-25}{m-5} $ .
So, the intersection point of $ 5x-y+4=0 $ and $ mx-y-m+5=0 $ is $ A\left( \dfrac{m-1}{m-5},\dfrac{9m-25}{m-5} \right) $ ---(2).
Now, let us find the point of intersection of lines $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ .
So, we get $ \dfrac{x}{\left( 4\times \left( -m+5 \right) \right)-\left( -1\times -4 \right)}=\dfrac{y}{\left( -4\times m \right)-\left( \left( -m+5 \right)\times 3 \right)}=\dfrac{1}{\left( 3\times -1 \right)-\left( 4\times m \right)} $ .
$ \Rightarrow \dfrac{x}{-4m+20-4}=\dfrac{y}{-4m+3m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow \dfrac{x}{-4m+16}=\dfrac{y}{-m-15}=\dfrac{1}{-3-4m} $ .
$ \Rightarrow x=\dfrac{4m-16}{3+4m} $ , $ y=\dfrac{m+15}{3+4m} $ .
So, the intersection point of $ 3x+4y-4=0 $ and $ mx-y-m+5=0 $ is $ B\left( \dfrac{4m-16}{3+4m},\dfrac{m+15}{3+4m} \right) $ ---(3).
According to the problem, we are given that the mid-point of AB is $ \left( 1,5 \right) $ .
So, we have $ \left( \dfrac{\left( \dfrac{m-1}{m-5}+\dfrac{4m-16}{3+4m} \right)}{2},\dfrac{\left( \dfrac{9m-25}{m-5}+\dfrac{m+15}{3+4m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{\left( m-1 \right)\left( 3+4m \right)+\left( 4m+16 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2},\dfrac{\left( \dfrac{\left( 9m-25 \right)\left( 3+4m \right)+\left( m+15 \right)\left( m-5 \right)}{\left( m-5 \right)\left( 3+4m \right)} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{4{{m}^{2}}+3m-4m-3+4{{m}^{2}}-16m-20m+80}{4{{m}^{2}}+3m-20m-15} \right)}{2},\dfrac{\left( \dfrac{36{{m}^{2}}+27m-100m-75+{{m}^{2}}+15m-5m-75}{3m+4{{m}^{2}}-15-20m} \right)}{2} \right)=\left( 1,5 \right) $ .
$ \Rightarrow \left( \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2},\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2} \right)=\left( 1,5 \right) $ .
\[\Rightarrow \dfrac{\left( \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15} \right)}{2}=1\], \[\dfrac{\left( \dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15} \right)}{2}=5\].
\[\Rightarrow \dfrac{8{{m}^{2}}-37m+77}{4{{m}^{2}}-17m-15}=2\], \[\dfrac{37{{m}^{2}}-63m-150}{4{{m}^{2}}-17m-15}=10\].
\[\Rightarrow 8{{m}^{2}}-37m+77=8{{m}^{2}}-34m-30\], \[37{{m}^{2}}-63m-150=40{{m}^{2}}-170m-150\].
\[\Rightarrow 3m=107\], \[3{{m}^{2}}-107m=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m\left( 3m-107 \right)=0\].
\[\Rightarrow m=\dfrac{107}{3}\], \[m=0\text{ or }m=\dfrac{107}{3}\].
We take the common value of m as it should be valid for both coordinates of the midpoint.
So, the value of m is $ \dfrac{107}{3} $ . Let us substitute this in equation (1).
So, we get the equation of the line as $ \left( \dfrac{107}{3} \right)x-y-\left( \dfrac{107}{3} \right)+5=0 $ .
$ \Rightarrow \dfrac{107x-3y-107+15}{3}=0 $ .
$ \Rightarrow 107x-3y-92=0 $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem by taking the parametric point on both the given lines and then equating the midpoint of those two parametric points to $ \left( 1,5 \right) $ to find the parameters which later helps us to find the equation of a line. Similarly, we can expect problems to find the equation of the line if $ \left( 1,2 \right) $ divides the line $ 1:2 $ internally.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it