
When a lead storage battery is discharged, then:
A) \[{\rm{S}}{{\rm{O}}_{\rm{2}}}\] gas is evolved
B) lead is formed
C) lead sulphate is consumed
D) sulphuric acid is consumed.
Answer
583.8k+ views
Hint: Lead storage battery is a secondary voltaic cell that can be recharged. The reactions taking place during the recharging process are reverse of the reactions taking place during the discharge.
Complete answer:
> Lead storage battery is a secondary voltaic cell that can be recharged. The reactions taking place during the recharging process are reverse of the reactions taking place during the discharge. During discharge, chemical energy is converted to electrical energy. During recharging, electrical energy is converted to chemical energy.
> Anode is made from a series of lead plates with spongy lead. Anode is a negative electrode. Cathode is a series of lead plates coated with lead dioxide. Cathode is a positive electrode. The aqueous sulphuric acid solution (density around ) is the electrolyte.
During discharge, the following reactions take place.
> Sulphuric acid ionizes to give protons and sulphate ions. At anode, lead reacts with sulphate ions to form lead sulphate and two electrons. At cathode, lead dioxide reacts with protons and sulphate ions to form lead sulphate and water. The net cell reaction is the reaction between lead, lead dioxide and sulphuric acid to form lead sulphate and water.
${\rm{2 }}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right){\rm{ }} \to {\rm{ 4 }}{{\rm{H}}^ + }\left( {aq} \right){\rm{ + 2 SO}}_4^{2 - }\left( {aq} \right)$
${\rm{Pb}}\left( s \right){\rm{ + SO}}_4^{2 - }\left( {aq} \right){\rm{ }} \to {\rm{ PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + 2 }}{{\rm{e}}^ - }{\rm{ }}\left( {{\rm{anode}}} \right)$
${\rm{Pb}}{{\rm{O}}_2}\left( s \right){\rm{ + 4 }}{{\rm{H}}^ + }\left( {aq} \right){\rm{ + SO}}_4^{2 - }\left( {aq} \right){\rm{ + 2 }}{{\rm{e}}^ - }{\rm{ }} \to {\rm{ PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right){\rm{ }}\left( {{\rm{cathode}}} \right)$
${\rm{Pb}}\left( s \right){\rm{ + Pb}}{{\rm{O}}_2}\left( s \right){\rm{ + 2 }}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right){\rm{ }} \to {\rm{ 2 PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right){\rm{ }}\left( {{\rm{overall reaction}}} \right){\rm{ }}$
When a lead storage battery is discharged, then sulphuric acid is consumed.
Hence, the option D ) is the correct answer.
Note: During recharging, sulphuric acid is formed. The overall reaction during charging is the reaction between lead sulphate and water to form lead, lead dioxide and sulphuric acid.
Complete answer:
> Lead storage battery is a secondary voltaic cell that can be recharged. The reactions taking place during the recharging process are reverse of the reactions taking place during the discharge. During discharge, chemical energy is converted to electrical energy. During recharging, electrical energy is converted to chemical energy.
> Anode is made from a series of lead plates with spongy lead. Anode is a negative electrode. Cathode is a series of lead plates coated with lead dioxide. Cathode is a positive electrode. The aqueous sulphuric acid solution (density around ) is the electrolyte.
During discharge, the following reactions take place.
> Sulphuric acid ionizes to give protons and sulphate ions. At anode, lead reacts with sulphate ions to form lead sulphate and two electrons. At cathode, lead dioxide reacts with protons and sulphate ions to form lead sulphate and water. The net cell reaction is the reaction between lead, lead dioxide and sulphuric acid to form lead sulphate and water.
${\rm{2 }}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right){\rm{ }} \to {\rm{ 4 }}{{\rm{H}}^ + }\left( {aq} \right){\rm{ + 2 SO}}_4^{2 - }\left( {aq} \right)$
${\rm{Pb}}\left( s \right){\rm{ + SO}}_4^{2 - }\left( {aq} \right){\rm{ }} \to {\rm{ PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + 2 }}{{\rm{e}}^ - }{\rm{ }}\left( {{\rm{anode}}} \right)$
${\rm{Pb}}{{\rm{O}}_2}\left( s \right){\rm{ + 4 }}{{\rm{H}}^ + }\left( {aq} \right){\rm{ + SO}}_4^{2 - }\left( {aq} \right){\rm{ + 2 }}{{\rm{e}}^ - }{\rm{ }} \to {\rm{ PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right){\rm{ }}\left( {{\rm{cathode}}} \right)$
${\rm{Pb}}\left( s \right){\rm{ + Pb}}{{\rm{O}}_2}\left( s \right){\rm{ + 2 }}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right){\rm{ }} \to {\rm{ 2 PbS}}{{\rm{O}}_4}\left( s \right){\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right){\rm{ }}\left( {{\rm{overall reaction}}} \right){\rm{ }}$
When a lead storage battery is discharged, then sulphuric acid is consumed.
Hence, the option D ) is the correct answer.
Note: During recharging, sulphuric acid is formed. The overall reaction during charging is the reaction between lead sulphate and water to form lead, lead dioxide and sulphuric acid.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

